Difference between revisions of "DPL94"
Line 13: | Line 13: | ||
At time of writing (March 2014) the parameters in relax was stored as: | At time of writing (March 2014) the parameters in relax was stored as: | ||
<source lang="python"> | <source lang="python"> | ||
− | + | # Load the outcome from an free-spin analysis | |
+ | state.load(state="results.bz2", dir="results/final") | ||
+ | |||
+ | # import spin functions | ||
+ | from pipe_control.mol_res_spin import return_spin, spin_loop | ||
+ | |||
+ | # Alias one spin | ||
+ | s13 = return_spin(":13@N") | ||
+ | |||
+ | # See attributes | ||
+ | dir(s13) | ||
+ | |||
+ | # See parameters | ||
+ | print(s13.params) | ||
+ | ['r2', 'phi_ex', 'kex'] | ||
+ | |||
+ | # See Ri data (ri_type: The relaxation data type, i.e. 'R1', 'R2', 'NOE', or 'R2eff'. ) | ||
+ | s13.ri_data | ||
+ | {'R1': 1.3239399999999999} | ||
</source> | </source> | ||
Revision as of 09:19, 5 March 2014
The Davis et al., 1994 2-site off-resonance fast exchange relaxation dispersion model for R1rho-type data. It extends the M61 model to off-resonance data, hence it collapses to this model for on-resonance data. The model is labelled as DPL94 in relax.
Contents
Equation
[math] \mathrm{R}_{1\rho}= \mathrm{R}_1\cos^2\theta + \left( \mathrm{R}_{1\rho}{´} + \frac{\Phi_\textrm{ex} \textrm{k}_\textrm{ex}}{\textrm{k}_\textrm{ex}^2 + \omega_\textrm{e}^2} \right) \sin^2\theta [/math]
Parameters
The DPL94 model has the parameters {$R_{1\rho}'$, $...$, $\Phi_{ex}$, $k_{ex}$}.
Parameter name space in relax
At time of writing (March 2014) the parameters in relax was stored as:
# Load the outcome from an free-spin analysis
state.load(state="results.bz2", dir="results/final")
# import spin functions
from pipe_control.mol_res_spin import return_spin, spin_loop
# Alias one spin
s13 = return_spin(":13@N")
# See attributes
dir(s13)
# See parameters
print(s13.params)
['r2', 'phi_ex', 'kex']
# See Ri data (ri_type: The relaxation data type, i.e. 'R1', 'R2', 'NOE', or 'R2eff'. )
s13.ri_data
{'R1': 1.3239399999999999}
Reference
The reference for the DPL94 model is:
- Davis, D., Perlman, M., and London, R. (1994). Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T1rho and T2 (CPMG) methods. J. Magn. Reson., 104(3), 266–275. (10.1006/jmrb.1994.1084)
Related models
The DPL94 model is simply the extension of the M61 model for off-resonance data.
Links
The implementation of the DPL94 model in relax can be seen in the: