Difference between revisions of "M61"

From relax wiki
Jump to navigation Jump to search
Line 3: Line 3:
 
== Equation ==
 
== Equation ==
 
<math>
 
<math>
\mathrm{R}_{1\rho}= \mathrm{R}_1\cos^2\theta + \left( \mathrm{R}_{1\rho}{´} + \frac{\Phi_\textrm{ex} \textrm{k}_\textrm{ex}}{\textrm{k}_\textrm{ex}^2 + \omega_\textrm{e}^2} \right)
+
\mathrm{R}_{1\rho}= \mathrm{R}_{1\rho}{´} + \frac{\Phi_\textrm{ex} \textrm{k}_\textrm{ex}}{\textrm{k}_\textrm{ex}^2 + \omega_\textrm{e}^2}
 
</math>
 
</math>
  

Revision as of 09:53, 5 March 2014

The Meiboom 1961 2-site on-resonance fast exchange relaxation dispersion model for R1rho-type data. This model is labelled as M61 in relax.

Equation

[math] \mathrm{R}_{1\rho}= \mathrm{R}_{1\rho}{´} + \frac{\Phi_\textrm{ex} \textrm{k}_\textrm{ex}}{\textrm{k}_\textrm{ex}^2 + \omega_\textrm{e}^2} [/math]

Parameters

The M61 model has the parameters {$R_{1\rho}'$, $...$, $\Phi_{ex}$, $k_{ex}$}.

Reference

The reference for the M61 model is:

  • Meiboom, S. (1961). Nuclear magnetic resonance study of proton transfer in water. J. Chem. Phys., 34(2), 375-388. (10.1063/1.1700960).

Related models

The DPL94 model is an extension of the M61 model for off-resonance data.

Links

The implementation of the M61 model in relax can be seen in the:

See also