For this model, the equations from Korzhnev05 have been used.
The $\mathrm{R}_{1\rho}$ value for state A magnetisation is defined as
<math>
\begin{equation}
\mathrm{R}_{1\rho} = - \frac{1}{T_\textrm{relax}} \cdot \ln \left( M_0^T \cdot e^{R \cdot T_\textrm{relax}} \cdot M_0 \right),
\end{equation}
</math>
where
<math>
\begin{align}
M_0 &= \begin{pmatrix} \sin{\theta} \\ 0 \\ \cos{\theta} \\ 0 \\ 0 \\ 0 \end{pmatrix}, \\
\theta &= \arctan \left( \frac{\omega_1}{\Omega_\textrm{A}} \right).
\end{align}
</math>
The relaxation evolution matrix is defined as
<math>
\begin{equation}
R = \begin{pmatrix}
\end{pmatrix},
\end{equation}
</math>
=== Essentials ===