Difference between revisions of "Calculate jacobian hessian matrix in sympy exponential decay"

From relax wiki
Jump to navigation Jump to search
(→‎Tutorial with quadratic chi2 function: Switched to the {{collapsible script}} template to de-clutter the article.)
Line 157: Line 157:
 
SBiNLab
 
SBiNLab
  
run by: '''python sympy_test.py'''
+
{{collapsible script
 
+
| type  = Python script
 
+
| title  = The <code>sympy_test.py</code> script.
<source lang="Python">
+
| intro  = Run with: <code>python sympy_test.py</code>
 +
| lang  = python
 +
| script =
 
# Tutorial from: http://scipy-lectures.github.io/advanced/sympy.html
 
# Tutorial from: http://scipy-lectures.github.io/advanced/sympy.html
  
Line 274: Line 276:
 
------------------------------------------------------------------------------
 
------------------------------------------------------------------------------
 
""" % (d2_chi2_d_r2eff_d_r2eff,d2_chi2_d_r2eff_d_i0, d2_chi2_d_i0_d_r2eff, d2_chi2_d_i0_d_i0) )
 
""" % (d2_chi2_d_r2eff_d_r2eff,d2_chi2_d_r2eff_d_i0, d2_chi2_d_i0_d_r2eff, d2_chi2_d_i0_d_i0) )
</source>
+
}}

Revision as of 15:38, 3 November 2015

Calculate Jacobian and Hessian matrix in python sympy for exponential decay function

See also:

  1. https://en.wikipedia.org/wiki/Propagation_of_uncertainty
  2. http://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
  3. http://en.wikipedia.org/wiki/Hessian_matrix
  4. http://maxima-online.org/articles/hessian.html
  5. http://certik.github.io/scipy-2013-tutorial/html/tutorial/basic_operations.html
  6. http://scipy-lectures.github.io/advanced/sympy.html
  7. http://docs.sympy.org/dev/gotchas.html
  8. https://github.com/sympy/sympy/wiki/Faq

Sumpy python installation

Consider for example installing Enthought Canopy

Tutorial with function for weighted difference between function evaluation with fitted parameters and measured values.

Created by:

Troels Emtekær Linnet
PhD student
Copenhagen University
SBiNLab

run with:

$ python sympy_test.py


Tutorial with quadratic chi2 function

Created by:

Troels Emtekær Linnet
PhD student
Copenhagen University
SBiNLab