Difference between revisions of "NS R1rho 2-site"

From relax wiki
Jump to navigation Jump to search
 
(21 intermediate revisions by 3 users not shown)
Line 1: Line 1:
The relaxation dispersion model for the numeric solution (NS) to the Bloch-McConnell equations for 2-site exchange for [[R1rho-type data]].  This model is labelled as '''NS R1rho 2-site''' in relax.
+
The relaxation dispersion model for the numeric solution (NS) to the Bloch-McConnell equations for 2-site exchange for [[R1rho-type data]].  This model is labelled as '''NS R1rho 2-site''' in [[Relaxation dispersion citation for relax|relax]].
  
 
== Equation ==
 
== Equation ==
Line 5: Line 5:
 
This is the numerical model for 2-site exchange using 3D magnetisation vectors.
 
This is the numerical model for 2-site exchange using 3D magnetisation vectors.
 
It is selected by setting the model to '''NS R1rho 2-site'''.
 
It is selected by setting the model to '''NS R1rho 2-site'''.
The simple constraint $\pA > \pB$ is used to halve the optimisation space, as both sides of the limit are mirror image spaces.
+
The simple constraint {{:pA}} > {{:pB}} is used to halve the optimisation space, as both sides of the limit are mirror image spaces.
  
 +
For this model, the equations from Korzhnev05 have been used.
 +
The {{:R1rho}} value for state A magnetisation is defined as
 +
 +
<math>
 +
\begin{equation}
 +
    \mathrm{R}_{1\rho} = - \frac{1}{T_\textrm{relax}}  \cdot \ln \left( M_0^T \cdot e^{R \cdot T_\textrm{relax}} \cdot M_0 \right),
 +
\end{equation}
 +
</math>
 +
 +
where
 +
 +
<math>
 +
\begin{align}
 +
    M_0    &= \begin{pmatrix} \sin{\theta} \\ 0 \\ \cos{\theta} \\ 0 \\ 0 \\ 0  \end{pmatrix}, \\
 +
    \theta &= \arctan \left( \frac{\omega_1}{\Omega_\textrm{A}} \right).
 +
\end{align}
 +
</math>
 +
 +
The relaxation evolution matrix is defined as
 +
 +
<math>
 +
\begin{equation}
 +
    R = \begin{pmatrix}
 +
          -\mathrm{R}_{1\rho}{´}-\textrm{k}_\textrm{AB} & -\delta_A          & 0          & \textrm{k}_\textrm{BA}                & 0                  & 0 \\
 +
          \delta_A            & -\mathrm{R}_{1\rho}{´}-\textrm{k}_\textrm{AB} & -\omega_1  & 0                  & \textrm{k}_\textrm{BA}                & 0 \\
 +
          0                  & \omega_1          & -\mathrm{R}_1-\textrm{k}_\textrm{AB} & 0                  & 0                  & \textrm{k}_\textrm{BA} \\
 +
          \textrm{k}_\textrm{AB}                & 0                  & 0          & -\mathrm{R}_{1\rho}{´}-\textrm{k}_\textrm{BA} & -\delta_B          & 0 \\
 +
          0                  & \textrm{k}_\textrm{AB}                & 0          & \delta_B            & -\mathrm{R}_{1\rho}{´}-\textrm{k}_\textrm{BA} & -\omega_1 \\
 +
          0                  & 0                  & \textrm{k}_\textrm{AB}        & 0                  & \omega_1          & -\mathrm{R}_1-\textrm{k}_\textrm{BA} \\
 +
        \end{pmatrix},
 +
\end{equation}
 +
</math>
 +
 +
=== Essentials ===
 +
It is essential to read in {{:R1}} values before starting a calculation:
 +
<source lang="python">
 +
relax_data.read(ri_id='R1', ri_type='R1', frq=cdp.spectrometer_frq_list[0], file='R1_values.txt', mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)
 +
</source>
 +
 +
Where the data could be stored like
 +
<source lang="text">
 +
# mol_name    res_num    res_name    spin_num    spin_name    value  error 
 +
None              13          L        None            N 1.323940 0.146870
 +
None              15          R        None            N 1.344280 0.140560
 +
None              16          T        None            N 1.715140 0.136510
 +
</source>
  
 
== Parameters ==
 
== Parameters ==
  
The NS R1rho 2-site model has the parameters {$R_{1\rho}'$, $...$, $p_A$, $\Delta\omega$, $k_{ex}$}.
+
The NS R1rho 2-site model has the parameters {{{:R1rhoprime}}, ..., {{:pA}}, {{:Deltaomega}}, {{:kex}}}.
  
 
== Reference ==
 
== Reference ==
Line 16: Line 62:
 
The reference for the NS R1rho 2-site model is:
 
The reference for the NS R1rho 2-site model is:
  
* Korzhnev, D. M., Orekhov, V. Y., and Kay, L. E. (2005). Off-resonance R(1rho) NMR studies of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3 domain. ''J. Am. Chem. Soc.'', '''127'''(2), 713-721. ([http://dx.doi.org/10.1021/ja0446855 10.1021/ja0446855]).
+
* {{#lst:Citations|Korzhnev05b}}
  
 
== Links ==
 
== Links ==
  
The implementation of the NS R1rho 2-site model in relax can be seen in the:
+
The [[Relaxation dispersion citation for relax|implementation of the NS R1rho 2-site model in relax]] can be seen in the:
* [http://www.nmr-relax.com/manual/NS_2_site_R1_model.html relax manual],  
+
* [http://www.nmr-relax.com/manual/The_NS_2_site_R1_rho_model.html relax manual],  
 
* [http://www.nmr-relax.com/api/3.1/lib.dispersion.ns_r1rho_2site-module.html API documentation],
 
* [http://www.nmr-relax.com/api/3.1/lib.dispersion.ns_r1rho_2site-module.html API documentation],
 
* [http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_R1rho_2-site relaxation dispersion page of the relax website].
 
* [http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_R1rho_2-site relaxation dispersion page of the relax website].
  
 
== See also ==
 
== See also ==
[[Category:Relaxation_dispersion]]
+
[[Category:Models]]
 +
[[Category:Dispersion models]]
 +
[[Category:Relaxation dispersion analysis]]

Latest revision as of 16:47, 6 November 2015

The relaxation dispersion model for the numeric solution (NS) to the Bloch-McConnell equations for 2-site exchange for R1rho-type data. This model is labelled as NS R1rho 2-site in relax.

Equation

This is the numerical model for 2-site exchange using 3D magnetisation vectors. It is selected by setting the model to NS R1rho 2-site. The simple constraint pA > pB is used to halve the optimisation space, as both sides of the limit are mirror image spaces.

For this model, the equations from Korzhnev05 have been used. The R value for state A magnetisation is defined as

[math] \begin{equation} \mathrm{R}_{1\rho} = - \frac{1}{T_\textrm{relax}} \cdot \ln \left( M_0^T \cdot e^{R \cdot T_\textrm{relax}} \cdot M_0 \right), \end{equation} [/math]

where

[math] \begin{align} M_0 &= \begin{pmatrix} \sin{\theta} \\ 0 \\ \cos{\theta} \\ 0 \\ 0 \\ 0 \end{pmatrix}, \\ \theta &= \arctan \left( \frac{\omega_1}{\Omega_\textrm{A}} \right). \end{align} [/math]

The relaxation evolution matrix is defined as

[math] \begin{equation} R = \begin{pmatrix} -\mathrm{R}_{1\rho}{´}-\textrm{k}_\textrm{AB} & -\delta_A & 0 & \textrm{k}_\textrm{BA} & 0 & 0 \\ \delta_A & -\mathrm{R}_{1\rho}{´}-\textrm{k}_\textrm{AB} & -\omega_1 & 0 & \textrm{k}_\textrm{BA} & 0 \\ 0 & \omega_1 & -\mathrm{R}_1-\textrm{k}_\textrm{AB} & 0 & 0 & \textrm{k}_\textrm{BA} \\ \textrm{k}_\textrm{AB} & 0 & 0 & -\mathrm{R}_{1\rho}{´}-\textrm{k}_\textrm{BA} & -\delta_B & 0 \\ 0 & \textrm{k}_\textrm{AB} & 0 & \delta_B & -\mathrm{R}_{1\rho}{´}-\textrm{k}_\textrm{BA} & -\omega_1 \\ 0 & 0 & \textrm{k}_\textrm{AB} & 0 & \omega_1 & -\mathrm{R}_1-\textrm{k}_\textrm{BA} \\ \end{pmatrix}, \end{equation} [/math]

Essentials

It is essential to read in R1 values before starting a calculation:

relax_data.read(ri_id='R1', ri_type='R1', frq=cdp.spectrometer_frq_list[0], file='R1_values.txt', mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)

Where the data could be stored like

# mol_name    res_num    res_name    spin_num    spin_name    value   error   
None               13           L        None            N 1.323940 0.146870
None               15           R        None            N 1.344280 0.140560
None               16           T        None            N 1.715140 0.136510

Parameters

The NS R1rho 2-site model has the parameters {R', ..., pA, Δω, kex}.

Reference

The reference for the NS R1rho 2-site model is:

  • Korzhnev, D. M., Orekhov, V. Y., and Kay, L. E. (2005). Off-resonance R(1rho) NMR studies of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3 domain. J. Am. Chem. Soc., 127(2), 713-721. (DOI: 10.1021/ja0446855)

Links

The implementation of the NS R1rho 2-site model in relax can be seen in the:

See also