Difference between revisions of "NS R1rho 2-site"

From relax wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by 2 users not shown)
Line 1: Line 1:
The relaxation dispersion model for the numeric solution (NS) to the Bloch-McConnell equations for 2-site exchange for [[R1rho-type data]].  This model is labelled as '''NS R1rho 2-site''' in relax.
+
The relaxation dispersion model for the numeric solution (NS) to the Bloch-McConnell equations for 2-site exchange for [[R1rho-type data]].  This model is labelled as '''NS R1rho 2-site''' in [[Relaxation dispersion citation for relax|relax]].
  
 
== Equation ==
 
== Equation ==
Line 5: Line 5:
 
This is the numerical model for 2-site exchange using 3D magnetisation vectors.
 
This is the numerical model for 2-site exchange using 3D magnetisation vectors.
 
It is selected by setting the model to '''NS R1rho 2-site'''.
 
It is selected by setting the model to '''NS R1rho 2-site'''.
The simple constraint $\textrm{pA} > \textrm{pB}$ is used to halve the optimisation space, as both sides of the limit are mirror image spaces.
+
The simple constraint {{:pA}} > {{:pB}} is used to halve the optimisation space, as both sides of the limit are mirror image spaces.
  
 
For this model, the equations from Korzhnev05 have been used.
 
For this model, the equations from Korzhnev05 have been used.
The $\mathrm{R}_{1\rho}$ value for state A magnetisation is defined as
+
The {{:R1rho}} value for state A magnetisation is defined as
 +
 
 +
<math>
 
\begin{equation}
 
\begin{equation}
 
     \mathrm{R}_{1\rho} = - \frac{1}{T_\textrm{relax}}  \cdot \ln \left( M_0^T \cdot e^{R \cdot T_\textrm{relax}} \cdot M_0 \right),
 
     \mathrm{R}_{1\rho} = - \frac{1}{T_\textrm{relax}}  \cdot \ln \left( M_0^T \cdot e^{R \cdot T_\textrm{relax}} \cdot M_0 \right),
 
\end{equation}
 
\end{equation}
 +
</math>
  
 
where
 
where
 +
 +
<math>
 
\begin{align}
 
\begin{align}
 
     M_0    &= \begin{pmatrix} \sin{\theta} \\ 0 \\ \cos{\theta} \\ 0 \\ 0 \\ 0  \end{pmatrix}, \\
 
     M_0    &= \begin{pmatrix} \sin{\theta} \\ 0 \\ \cos{\theta} \\ 0 \\ 0 \\ 0  \end{pmatrix}, \\
 
     \theta &= \arctan \left( \frac{\omega_1}{\Omega_\textrm{A}} \right).
 
     \theta &= \arctan \left( \frac{\omega_1}{\Omega_\textrm{A}} \right).
 
\end{align}
 
\end{align}
 +
</math>
  
 
The relaxation evolution matrix is defined as
 
The relaxation evolution matrix is defined as
 +
 +
<math>
 
\begin{equation}
 
\begin{equation}
 
     R = \begin{pmatrix}
 
     R = \begin{pmatrix}
Line 30: Line 38:
 
         \end{pmatrix},
 
         \end{pmatrix},
 
\end{equation}
 
\end{equation}
 +
</math>
  
 
=== Essentials ===
 
=== Essentials ===
It is essential to read in $R_{1}$ values before starting a calculation:
+
It is essential to read in {{:R1}} values before starting a calculation:
 
<source lang="python">
 
<source lang="python">
 
relax_data.read(ri_id='R1', ri_type='R1', frq=cdp.spectrometer_frq_list[0], file='R1_values.txt', mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)
 
relax_data.read(ri_id='R1', ri_type='R1', frq=cdp.spectrometer_frq_list[0], file='R1_values.txt', mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)
Line 47: Line 56:
 
== Parameters ==
 
== Parameters ==
  
The NS R1rho 2-site model has the parameters {$R_{1\rho}'$, $...$, $p_A$, $\Delta\omega$, $k_{ex}$}.
+
The NS R1rho 2-site model has the parameters {{{:R1rhoprime}}, ..., {{:pA}}, {{:Deltaomega}}, {{:kex}}}.
  
 
== Reference ==
 
== Reference ==
Line 53: Line 62:
 
The reference for the NS R1rho 2-site model is:
 
The reference for the NS R1rho 2-site model is:
  
* Korzhnev, D. M., Orekhov, V. Y., and Kay, L. E. (2005). Off-resonance R(1rho) NMR studies of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3 domain. ''J. Am. Chem. Soc.'', '''127'''(2), 713-721. ([http://dx.doi.org/10.1021/ja0446855 10.1021/ja0446855]).
+
* {{#lst:Citations|Korzhnev05b}}
  
 
== Links ==
 
== Links ==
  
The implementation of the NS R1rho 2-site model in relax can be seen in the:
+
The [[Relaxation dispersion citation for relax|implementation of the NS R1rho 2-site model in relax]] can be seen in the:
* [http://www.nmr-relax.com/manual/NS_2_site_R1_model.html relax manual],  
+
* [http://www.nmr-relax.com/manual/The_NS_2_site_R1_rho_model.html relax manual],  
 
* [http://www.nmr-relax.com/api/3.1/lib.dispersion.ns_r1rho_2site-module.html API documentation],
 
* [http://www.nmr-relax.com/api/3.1/lib.dispersion.ns_r1rho_2site-module.html API documentation],
 
* [http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_R1rho_2-site relaxation dispersion page of the relax website].
 
* [http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_R1rho_2-site relaxation dispersion page of the relax website].
  
 
== See also ==
 
== See also ==
[[Category:Relaxation_dispersion]]
+
[[Category:Models]]
 +
[[Category:Dispersion models]]
 +
[[Category:Relaxation dispersion analysis]]

Latest revision as of 16:47, 6 November 2015

The relaxation dispersion model for the numeric solution (NS) to the Bloch-McConnell equations for 2-site exchange for R1rho-type data. This model is labelled as NS R1rho 2-site in relax.

Equation

This is the numerical model for 2-site exchange using 3D magnetisation vectors. It is selected by setting the model to NS R1rho 2-site. The simple constraint pA > pB is used to halve the optimisation space, as both sides of the limit are mirror image spaces.

For this model, the equations from Korzhnev05 have been used. The R value for state A magnetisation is defined as

[math] \begin{equation} \mathrm{R}_{1\rho} = - \frac{1}{T_\textrm{relax}} \cdot \ln \left( M_0^T \cdot e^{R \cdot T_\textrm{relax}} \cdot M_0 \right), \end{equation} [/math]

where

[math] \begin{align} M_0 &= \begin{pmatrix} \sin{\theta} \\ 0 \\ \cos{\theta} \\ 0 \\ 0 \\ 0 \end{pmatrix}, \\ \theta &= \arctan \left( \frac{\omega_1}{\Omega_\textrm{A}} \right). \end{align} [/math]

The relaxation evolution matrix is defined as

[math] \begin{equation} R = \begin{pmatrix} -\mathrm{R}_{1\rho}{´}-\textrm{k}_\textrm{AB} & -\delta_A & 0 & \textrm{k}_\textrm{BA} & 0 & 0 \\ \delta_A & -\mathrm{R}_{1\rho}{´}-\textrm{k}_\textrm{AB} & -\omega_1 & 0 & \textrm{k}_\textrm{BA} & 0 \\ 0 & \omega_1 & -\mathrm{R}_1-\textrm{k}_\textrm{AB} & 0 & 0 & \textrm{k}_\textrm{BA} \\ \textrm{k}_\textrm{AB} & 0 & 0 & -\mathrm{R}_{1\rho}{´}-\textrm{k}_\textrm{BA} & -\delta_B & 0 \\ 0 & \textrm{k}_\textrm{AB} & 0 & \delta_B & -\mathrm{R}_{1\rho}{´}-\textrm{k}_\textrm{BA} & -\omega_1 \\ 0 & 0 & \textrm{k}_\textrm{AB} & 0 & \omega_1 & -\mathrm{R}_1-\textrm{k}_\textrm{BA} \\ \end{pmatrix}, \end{equation} [/math]

Essentials

It is essential to read in R1 values before starting a calculation:

relax_data.read(ri_id='R1', ri_type='R1', frq=cdp.spectrometer_frq_list[0], file='R1_values.txt', mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)

Where the data could be stored like

# mol_name    res_num    res_name    spin_num    spin_name    value   error   
None               13           L        None            N 1.323940 0.146870
None               15           R        None            N 1.344280 0.140560
None               16           T        None            N 1.715140 0.136510

Parameters

The NS R1rho 2-site model has the parameters {R', ..., pA, Δω, kex}.

Reference

The reference for the NS R1rho 2-site model is:

  • Korzhnev, D. M., Orekhov, V. Y., and Kay, L. E. (2005). Off-resonance R(1rho) NMR studies of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3 domain. J. Am. Chem. Soc., 127(2), 713-721. (DOI: 10.1021/ja0446855)

Links

The implementation of the NS R1rho 2-site model in relax can be seen in the:

See also