Difference between revisions of "Tutorial for model free SBiNLab"

From relax wiki
Jump to navigation Jump to search
Line 892: Line 892:
 
* View -> Data pipe editor
 
* View -> Data pipe editor
 
* Right click on pipe, and select "Associate with a new auto-analysis"
 
* Right click on pipe, and select "Associate with a new auto-analysis"
 +
 +
=== Create input for other programs ===
 +
Relax can create input files to other program, to help verify the results.
 +
 +
* dasha
  
 
== 04_run_default_with_tolerance_lim.py - Try fast run ==
 
== 04_run_default_with_tolerance_lim.py - Try fast run ==

Revision as of 15:52, 15 October 2017

Background

This is a tutorial for Lau and Kaare in SBiNLab, and hopefully others.

To get inspiration of example scripts files and see how the protocol is performed, have a look here:

  • nmr-relax-code/test_suite/system_tests/scripts/model_free/dauvergne_protocol.py
  • nmr-relax-code/auto_analyses/dauvergne_protocol.py

For references, see relax references:

Scripts

To get the protocol to work, we need to

  • Load a PDB structure
  • Assign the "data structure" in relax through spin-assignments
  • Assign necessary "information" as isotope information to each spin-assignment
  • Read "R1, R2 and NOE" for different magnet field strengths
  • Calculate some properties
  • Check the data
  • Run the protocol

To work most efficiently, it is important to perform each step 1 by 1, and closely inspect the log for any errors.

For similar tutorial, have a look at: Tutorial for model-free analysis sam mahdi

01_read_pdb.py - Test load of PDB

First we just want to test to read the PDB file.

01_read_pdb.py

See file content
# Python module imports.
from time import asctime, localtime
import os

# relax module imports.
from auto_analyses.dauvergne_protocol import dAuvergne_protocol

# Set up the data pipe.
#######################

# The following sequence of user function calls can be changed as needed.

# Create the data pipe.
bundle_name = "mf (%s)" % asctime(localtime())
name = "origin"
pipe.create(name, 'mf', bundle=bundle_name)

# Load the PDB file.
structure.read_pdb('energy_1.pdb', set_mol_name='TEMP', read_model=1)

# Set up the 15N and 1H spins (both backbone and Trp indole sidechains).
structure.load_spins('@N', ave_pos=True)
structure.load_spins('@NE1', ave_pos=True)
structure.load_spins('@H', ave_pos=True)
structure.load_spins('@HE1', ave_pos=True)

# Assign isotopes
spin.isotope('15N', spin_id='@N*')
spin.isotope('1H', spin_id='@H*')

Run with

relax 01_read_pdb.py -t 01_read_pdb.log
Output from logfile
script = '01_read_pdb.py'
----------------------------------------------------------------------------------------------------
# Python module imports.
from time import asctime, localtime
import os

# relax module imports.
from auto_analyses.dauvergne_protocol import dAuvergne_protocol

# Set up the data pipe.
#######################

# The following sequence of user function calls can be changed as needed.

# Create the data pipe.
bundle_name = "mf (%s)" % asctime(localtime())
name = "origin"
pipe.create(name, 'mf', bundle=bundle_name)

# Load the PDB file.
structure.read_pdb('energy_1.pdb', set_mol_name='TEMP', read_model=1)

# Set up the 15N and 1H spins (both backbone and Trp indole sidechains).
structure.load_spins('@N', ave_pos=True)
structure.load_spins('@NE1', ave_pos=True)
structure.load_spins('@H', ave_pos=True)
structure.load_spins('@HE1', ave_pos=True)

# Assign isotopes
spin.isotope('15N', spin_id='@N*')
spin.isotope('1H', spin_id='@H*')

----------------------------------------------------------------------------------------------------

relax> pipe.create(pipe_name='origin', pipe_type='mf', bundle='mf (Fri Oct 13 17:44:18 2017)')

relax> structure.read_pdb(file='energy_1.pdb', dir=None, read_mol=None, set_mol_name='TEMP', read_model=1, set_model_num=None, alt_loc=None, verbosity=1, merge=False)

Internal relax PDB parser.
Opening the file 'energy_1.pdb' for reading.
RelaxWarning: Cannot determine the element associated with atom 'X'.
RelaxWarning: Cannot determine the element associated with atom 'Z'.
RelaxWarning: Cannot determine the element associated with atom 'OO'.
RelaxWarning: Cannot determine the element associated with atom 'OO2'.
Adding molecule 'TEMP' to model 1 (from the original molecule number 1 of model 1).

relax> structure.load_spins(spin_id='@N', from_mols=None, mol_name_target=None, ave_pos=True, spin_num=True)
Adding the following spins to the relax data store.

# mol_name    res_num    res_name    spin_num    spin_name    
REMOVED FROM DISPLAY

relax> structure.load_spins(spin_id='@NE1', from_mols=None, mol_name_target=None, ave_pos=True, spin_num=True)
Adding the following spins to the relax data store.

# mol_name    res_num    res_name    spin_num    spin_name    
REMOVED FROM DISPLAY

relax> structure.load_spins(spin_id='@H', from_mols=None, mol_name_target=None, ave_pos=True, spin_num=True)
Adding the following spins to the relax data store.

# mol_name    res_num    res_name    spin_num    spin_name    
REMOVED FROM DISPLAY

relax> structure.load_spins(spin_id='@HE1', from_mols=None, mol_name_target=None, ave_pos=True, spin_num=True)
Adding the following spins to the relax data store.

# mol_name    res_num    res_name    spin_num    spin_name    
REMOVED FROM DISPLAY

relax> spin.isotope(isotope='15N', spin_id='@N*', force=False)

relax> spin.isotope(isotope='1H', spin_id='@H*', force=False)

02_read_data.py - Test load of data

That looked to go fine, so let us try to just load data.

Copy 01_read_pdb.py to 02_read_data.py and add:

See file content
# Load the relaxation data.
relax_data.read(ri_id='R1_600',  ri_type='R1',  frq=600.17*1e6, file='R1_600MHz_new_model_free.dat',  mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)
relax_data.read(ri_id='R2_600',  ri_type='R2',  frq=600.17*1e6, file='R2_600MHz_new_model_free.dat',  mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)
relax_data.read(ri_id='NOE_600',  ri_type='NOE',  frq=600.17*1e6, file='NOE_600MHz_new.dat',  mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)
relax_data.read(ri_id='R1_750',  ri_type='R1',  frq=750.06*1e6, file='R1_750MHz_model_free.dat',  mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)
relax_data.read(ri_id='R2_750',  ri_type='R2',  frq=750.06*1e6, file='R2_750MHz_model_free.dat',  mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)
relax_data.read(ri_id='NOE_750', ri_type='NOE', frq=750.06*1e6, file='NOE_750MHz.dat', mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)

# Define the magnetic dipole-dipole relaxation interaction.
interatom.define(spin_id1='@N', spin_id2='@H', direct_bond=True)
interatom.define(spin_id1='@NE1', spin_id2='@HE1', direct_bond=True)
interatom.set_dist(spin_id1='@N*', spin_id2='@H*', ave_dist=1.02 * 1e-10)
interatom.unit_vectors()

# Define the chemical shift relaxation interaction.
value.set(-172 * 1e-6, 'csa', spin_id='@N*')

Run with

relax 02_read_data.py -t 02_read_data.log
Output from logfile
script = '02_read_data.py'
----------------------------------------------------------------------------------------------------
# Python module imports.
from time import asctime, localtime
import os

# relax module imports.
from auto_analyses.dauvergne_protocol import dAuvergne_protocol

# Set up the data pipe.
#######################

# The following sequence of user function calls can be changed as needed.

# Create the data pipe.
bundle_name = "mf (%s)" % asctime(localtime())
name = "origin"
pipe.create(name, 'mf', bundle=bundle_name)

# Load the PDB file.
structure.read_pdb('energy_1.pdb', set_mol_name='TEMP', read_model=1)

# Set up the 15N and 1H spins (both backbone and Trp indole sidechains).
structure.load_spins('@N', ave_pos=True)
structure.load_spins('@NE1', ave_pos=True)
structure.load_spins('@H', ave_pos=True)
structure.load_spins('@HE1', ave_pos=True)

# Assign isotopes
spin.isotope('15N', spin_id='@N*')
spin.isotope('1H', spin_id='@H*')

# Load the relaxation data.
relax_data.read(ri_id='R1_600',  ri_type='R1',  frq=600.17*1e6, file='R1_600MHz_new_model_free.dat',  mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)
relax_data.read(ri_id='R2_600',  ri_type='R2',  frq=600.17*1e6, file='R2_600MHz_new_model_free.dat',  mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)
relax_data.read(ri_id='NOE_600',  ri_type='NOE',  frq=600.17*1e6, file='NOE_600MHz_new.dat',  mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)
relax_data.read(ri_id='R1_750',  ri_type='R1',  frq=750.06*1e6, file='R1_750MHz_model_free.dat',  mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)
relax_data.read(ri_id='R2_750',  ri_type='R2',  frq=750.06*1e6, file='R2_750MHz_model_free.dat',  mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)
relax_data.read(ri_id='NOE_750', ri_type='NOE', frq=750.06*1e6, file='NOE_750MHz.dat', mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)

# Define the magnetic dipole-dipole relaxation interaction.
interatom.define(spin_id1='@N', spin_id2='@H', direct_bond=True)
interatom.define(spin_id1='@NE1', spin_id2='@HE1', direct_bond=True)
interatom.set_dist(spin_id1='@N*', spin_id2='@H*', ave_dist=1.02 * 1e-10)
interatom.unit_vectors()

# Define the chemical shift relaxation interaction.
value.set(-172 * 1e-6, 'csa', spin_id='@N*')

----------------------------------------------------------------------------------------------------

relax> pipe.create(pipe_name='origin', pipe_type='mf', bundle='mf (Fri Oct 13 17:51:28 2017)')

relax> structure.read_pdb(file='energy_1.pdb', dir=None, read_mol=None, set_mol_name='TEMP', read_model=1, set_model_num=None, alt_loc=None, verbosity=1, merge=False)

Internal relax PDB parser.
Opening the file 'energy_1.pdb' for reading.
RelaxWarning: Cannot determine the element associated with atom 'X'.
RelaxWarning: Cannot determine the element associated with atom 'Z'.
RelaxWarning: Cannot determine the element associated with atom 'OO'.
RelaxWarning: Cannot determine the element associated with atom 'OO2'.
Adding molecule 'TEMP' to model 1 (from the original molecule number 1 of model 1).

relax> structure.load_spins(spin_id='@N', from_mols=None, mol_name_target=None, ave_pos=True, spin_num=True)
Adding the following spins to the relax data store.

# mol_name    res_num    res_name    spin_num    spin_name    
REMOVED FROM DISPLAY

relax> structure.load_spins(spin_id='@NE1', from_mols=None, mol_name_target=None, ave_pos=True, spin_num=True)
Adding the following spins to the relax data store.

# mol_name    res_num    res_name    spin_num    spin_name    
REMOVED FROM DISPLAY

relax> structure.load_spins(spin_id='@H', from_mols=None, mol_name_target=None, ave_pos=True, spin_num=True)
Adding the following spins to the relax data store.

# mol_name    res_num    res_name    spin_num    spin_name    
REMOVED FROM DISPLAY

relax> structure.load_spins(spin_id='@HE1', from_mols=None, mol_name_target=None, ave_pos=True, spin_num=True)
Adding the following spins to the relax data store.

# mol_name    res_num    res_name    spin_num    spin_name    
REMOVED FROM DISPLAY

relax> spin.isotope(isotope='15N', spin_id='@N*', force=False)

relax> spin.isotope(isotope='1H', spin_id='@H*', force=False)

relax> relax_data.read(ri_id='R1_600', ri_type='R1', frq=600170000.0, file='R1_600MHz_new_model_free.dat', dir=None, spin_id_col=None, mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7, sep=None, spin_id=None)
Opening the file 'R1_600MHz_new_model_free.dat' for reading.

The following 600.17 MHz R1 relaxation data with the ID 'R1_600' has been loaded into the relax data store:

# Spin_ID          Value       Error       
REMOVED FROM DISPLAY    

relax> relax_data.read(ri_id='R2_600', ri_type='R2', frq=600170000.0, file='R2_600MHz_new_model_free.dat', dir=None, spin_id_col=None, mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7, sep=None, spin_id=None)
Opening the file 'R2_600MHz_new_model_free.dat' for reading.

The following 600.17 MHz R2 relaxation data with the ID 'R2_600' has been loaded into the relax data store:

# Spin_ID          Value        Error       
REMOVED FROM DISPLAY  

relax> relax_data.read(ri_id='NOE_600', ri_type='NOE', frq=600170000.0, file='NOE_600MHz_new.dat', dir=None, spin_id_col=None, mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7, sep=None, spin_id=None)
Opening the file 'NOE_600MHz_new.dat' for reading.

The following 600.17 MHz NOE relaxation data with the ID 'NOE_600' has been loaded into the relax data store:

# Spin_ID          Value        Error    
REMOVED FROM DISPLAY  

relax> relax_data.read(ri_id='R1_750', ri_type='R1', frq=750060000.0, file='R1_750MHz_model_free.dat', dir=None, spin_id_col=None, mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7, sep=None, spin_id=None)
Opening the file 'R1_750MHz_model_free.dat' for reading.

The following 750.06 MHz R1 relaxation data with the ID 'R1_750' has been loaded into the relax data store:

# Spin_ID          Value       Error       
REMOVED FROM DISPLAY  

relax> relax_data.read(ri_id='R2_750', ri_type='R2', frq=750060000.0, file='R2_750MHz_model_free.dat', dir=None, spin_id_col=None, mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7, sep=None, spin_id=None)
Opening the file 'R2_750MHz_model_free.dat' for reading.

The following 750.06 MHz R2 relaxation data with the ID 'R2_750' has been loaded into the relax data store:

# Spin_ID          Value        Error       
REMOVED FROM DISPLAY    

relax> relax_data.read(ri_id='NOE_750', ri_type='NOE', frq=750060000.0, file='NOE_750MHz.dat', dir=None, spin_id_col=None, mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7, sep=None, spin_id=None)
Opening the file 'NOE_750MHz.dat' for reading.

The following 750.06 MHz NOE relaxation data with the ID 'NOE_750' has been loaded into the relax data store:

# Spin_ID          Value        Error    
REMOVED FROM DISPLAY    

relax> interatom.define(spin_id1='@N', spin_id2='@H', direct_bond=True, spin_selection=True, pipe=None)
Interatomic interactions are now defined for the following spins:

# Spin_ID_1         Spin_ID_2           
'#TEMP:3@N'      '#TEMP:3@H'      
'#TEMP:4@N'      '#TEMP:4@H'      
'#TEMP:5@N'      '#TEMP:5@H'      
'#TEMP:6@N'      '#TEMP:6@H'      
'#TEMP:7@N'      '#TEMP:7@H'      
'#TEMP:8@N'      '#TEMP:8@H'      
'#TEMP:9@N'      '#TEMP:9@H'      
'#TEMP:10@N'     '#TEMP:10@H'     
'#TEMP:11@N'     '#TEMP:11@H'     
'#TEMP:13@N'     '#TEMP:13@H'     
'#TEMP:14@N'     '#TEMP:14@H'     
'#TEMP:15@N'     '#TEMP:15@H'     
'#TEMP:16@N'     '#TEMP:16@H'     
'#TEMP:17@N'     '#TEMP:17@H'     
'#TEMP:18@N'     '#TEMP:18@H'     
'#TEMP:19@N'     '#TEMP:19@H'     
'#TEMP:20@N'     '#TEMP:20@H'     
'#TEMP:21@N'     '#TEMP:21@H'     
'#TEMP:22@N'     '#TEMP:22@H'     
'#TEMP:23@N'     '#TEMP:23@H'     
'#TEMP:24@N'     '#TEMP:24@H'     
'#TEMP:25@N'     '#TEMP:25@H'     
'#TEMP:26@N'     '#TEMP:26@H'     
'#TEMP:27@N'     '#TEMP:27@H'     
'#TEMP:28@N'     '#TEMP:28@H'     
'#TEMP:29@N'     '#TEMP:29@H'     
'#TEMP:30@N'     '#TEMP:30@H'     
'#TEMP:31@N'     '#TEMP:31@H'     
'#TEMP:32@N'     '#TEMP:32@H'     
'#TEMP:33@N'     '#TEMP:33@H'     
'#TEMP:34@N'     '#TEMP:34@H'     
'#TEMP:35@N'     '#TEMP:35@H'     
'#TEMP:36@N'     '#TEMP:36@H'     
'#TEMP:37@N'     '#TEMP:37@H'     
'#TEMP:38@N'     '#TEMP:38@H'     
'#TEMP:39@N'     '#TEMP:39@H'     
'#TEMP:40@N'     '#TEMP:40@H'     
'#TEMP:41@N'     '#TEMP:41@H'     
'#TEMP:42@N'     '#TEMP:42@H'     
'#TEMP:43@N'     '#TEMP:43@H'     
'#TEMP:45@N'     '#TEMP:45@H'     
'#TEMP:46@N'     '#TEMP:46@H'     
'#TEMP:47@N'     '#TEMP:47@H'     
'#TEMP:48@N'     '#TEMP:48@H'     
'#TEMP:49@N'     '#TEMP:49@H'     
'#TEMP:50@N'     '#TEMP:50@H'     
'#TEMP:51@N'     '#TEMP:51@H'     
'#TEMP:52@N'     '#TEMP:52@H'     
'#TEMP:53@N'     '#TEMP:53@H'     
'#TEMP:54@N'     '#TEMP:54@H'     
'#TEMP:55@N'     '#TEMP:55@H'     
'#TEMP:56@N'     '#TEMP:56@H'     
'#TEMP:57@N'     '#TEMP:57@H'     
'#TEMP:58@N'     '#TEMP:58@H'     
'#TEMP:59@N'     '#TEMP:59@H'     
'#TEMP:60@N'     '#TEMP:60@H'     
'#TEMP:61@N'     '#TEMP:61@H'     
'#TEMP:62@N'     '#TEMP:62@H'     
'#TEMP:63@N'     '#TEMP:63@H'     
'#TEMP:64@N'     '#TEMP:64@H'     
'#TEMP:65@N'     '#TEMP:65@H'     
'#TEMP:66@N'     '#TEMP:66@H'     
'#TEMP:67@N'     '#TEMP:67@H'     
'#TEMP:68@N'     '#TEMP:68@H'     
'#TEMP:69@N'     '#TEMP:69@H'     
'#TEMP:70@N'     '#TEMP:70@H'     
'#TEMP:71@N'     '#TEMP:71@H'     
'#TEMP:72@N'     '#TEMP:72@H'     
'#TEMP:73@N'     '#TEMP:73@H'     
'#TEMP:74@N'     '#TEMP:74@H'     
'#TEMP:75@N'     '#TEMP:75@H'     
'#TEMP:76@N'     '#TEMP:76@H'     
'#TEMP:77@N'     '#TEMP:77@H'     
'#TEMP:78@N'     '#TEMP:78@H'     
'#TEMP:79@N'     '#TEMP:79@H'     
'#TEMP:80@N'     '#TEMP:80@H'     
'#TEMP:81@N'     '#TEMP:81@H'     
'#TEMP:82@N'     '#TEMP:82@H'     
'#TEMP:83@N'     '#TEMP:83@H'     
'#TEMP:84@N'     '#TEMP:84@H'     
'#TEMP:85@N'     '#TEMP:85@H'     
'#TEMP:87@N'     '#TEMP:87@H'     
'#TEMP:88@N'     '#TEMP:88@H'     
'#TEMP:89@N'     '#TEMP:89@H'     
'#TEMP:90@N'     '#TEMP:90@H'     
'#TEMP:91@N'     '#TEMP:91@H'     
'#TEMP:93@N'     '#TEMP:93@H'     
'#TEMP:94@N'     '#TEMP:94@H'     
'#TEMP:95@N'     '#TEMP:95@H'     
'#TEMP:96@N'     '#TEMP:96@H'     
'#TEMP:97@N'     '#TEMP:97@H'     
'#TEMP:98@N'     '#TEMP:98@H'     
'#TEMP:99@N'     '#TEMP:99@H'     
'#TEMP:100@N'    '#TEMP:100@H'    
'#TEMP:101@N'    '#TEMP:101@H'    
'#TEMP:102@N'    '#TEMP:102@H'    
'#TEMP:103@N'    '#TEMP:103@H'    
'#TEMP:104@N'    '#TEMP:104@H'    
'#TEMP:105@N'    '#TEMP:105@H'    
'#TEMP:106@N'    '#TEMP:106@H'    
'#TEMP:107@N'    '#TEMP:107@H'    
'#TEMP:108@N'    '#TEMP:108@H'    
'#TEMP:109@N'    '#TEMP:109@H'    
'#TEMP:110@N'    '#TEMP:110@H'    
'#TEMP:111@N'    '#TEMP:111@H'    
'#TEMP:112@N'    '#TEMP:112@H'    
'#TEMP:113@N'    '#TEMP:113@H'    
'#TEMP:114@N'    '#TEMP:114@H'    
'#TEMP:115@N'    '#TEMP:115@H'    
'#TEMP:116@N'    '#TEMP:116@H'    
'#TEMP:117@N'    '#TEMP:117@H'    
'#TEMP:118@N'    '#TEMP:118@H'    
'#TEMP:119@N'    '#TEMP:119@H'    
'#TEMP:120@N'    '#TEMP:120@H'    
'#TEMP:121@N'    '#TEMP:121@H'    
'#TEMP:122@N'    '#TEMP:122@H'    
'#TEMP:123@N'    '#TEMP:123@H'    
'#TEMP:124@N'    '#TEMP:124@H'    
'#TEMP:125@N'    '#TEMP:125@H'    
'#TEMP:127@N'    '#TEMP:127@H'    
'#TEMP:128@N'    '#TEMP:128@H'    
'#TEMP:129@N'    '#TEMP:129@H'    
'#TEMP:130@N'    '#TEMP:130@H'    
'#TEMP:131@N'    '#TEMP:131@H'    
'#TEMP:132@N'    '#TEMP:132@H'    
'#TEMP:133@N'    '#TEMP:133@H'    
'#TEMP:134@N'    '#TEMP:134@H'    
'#TEMP:136@N'    '#TEMP:136@H'    
'#TEMP:138@N'    '#TEMP:138@H'    
'#TEMP:139@N'    '#TEMP:139@H'    
'#TEMP:140@N'    '#TEMP:140@H'    
'#TEMP:141@N'    '#TEMP:141@H'    
'#TEMP:142@N'    '#TEMP:142@H'    
'#TEMP:143@N'    '#TEMP:143@H'    
'#TEMP:144@N'    '#TEMP:144@H'    
'#TEMP:145@N'    '#TEMP:145@H'    
'#TEMP:146@N'    '#TEMP:146@H'    
'#TEMP:147@N'    '#TEMP:147@H'    
'#TEMP:148@N'    '#TEMP:148@H'    
'#TEMP:149@N'    '#TEMP:149@H'    
'#TEMP:150@N'    '#TEMP:150@H'    
'#TEMP:151@N'    '#TEMP:151@H'    
'#TEMP:152@N'    '#TEMP:152@H'    
'#TEMP:153@N'    '#TEMP:153@H'    
'#TEMP:154@N'    '#TEMP:154@H'    
'#TEMP:155@N'    '#TEMP:155@H'    
'#TEMP:156@N'    '#TEMP:156@H'    
'#TEMP:157@N'    '#TEMP:157@H'    
'#TEMP:158@N'    '#TEMP:158@H'    
'#TEMP:159@N'    '#TEMP:159@H'    

relax> interatom.define(spin_id1='@NE1', spin_id2='@HE1', direct_bond=True, spin_selection=True, pipe=None)
Interatomic interactions are now defined for the following spins:

# Spin_ID_1          Spin_ID_2            
'#TEMP:33@NE1'    '#TEMP:33@HE1'    
'#TEMP:48@NE1'    '#TEMP:48@HE1'    
'#TEMP:49@NE1'    '#TEMP:49@HE1'    
'#TEMP:59@NE1'    '#TEMP:59@HE1'    
'#TEMP:98@NE1'    '#TEMP:98@HE1'    

relax> interatom.set_dist(spin_id1='@N*', spin_id2='@H*', ave_dist=1.0200000000000001e-10, unit='meter')
The following averaged distances have been set:

# Spin_ID_1          Spin_ID_2            Ave_distance(meters)      
'#TEMP:3@N'       '#TEMP:3@H'       1.0200000000000001e-10    
'#TEMP:4@N'       '#TEMP:4@H'       1.0200000000000001e-10    
'#TEMP:5@N'       '#TEMP:5@H'       1.0200000000000001e-10    
'#TEMP:6@N'       '#TEMP:6@H'       1.0200000000000001e-10    
'#TEMP:7@N'       '#TEMP:7@H'       1.0200000000000001e-10    
'#TEMP:8@N'       '#TEMP:8@H'       1.0200000000000001e-10    
'#TEMP:9@N'       '#TEMP:9@H'       1.0200000000000001e-10    
'#TEMP:10@N'      '#TEMP:10@H'      1.0200000000000001e-10    
'#TEMP:11@N'      '#TEMP:11@H'      1.0200000000000001e-10    
'#TEMP:13@N'      '#TEMP:13@H'      1.0200000000000001e-10    
'#TEMP:14@N'      '#TEMP:14@H'      1.0200000000000001e-10    
'#TEMP:15@N'      '#TEMP:15@H'      1.0200000000000001e-10    
'#TEMP:16@N'      '#TEMP:16@H'      1.0200000000000001e-10    
'#TEMP:17@N'      '#TEMP:17@H'      1.0200000000000001e-10    
'#TEMP:18@N'      '#TEMP:18@H'      1.0200000000000001e-10    
'#TEMP:19@N'      '#TEMP:19@H'      1.0200000000000001e-10    
'#TEMP:20@N'      '#TEMP:20@H'      1.0200000000000001e-10    
'#TEMP:21@N'      '#TEMP:21@H'      1.0200000000000001e-10    
'#TEMP:22@N'      '#TEMP:22@H'      1.0200000000000001e-10    
'#TEMP:23@N'      '#TEMP:23@H'      1.0200000000000001e-10    
'#TEMP:24@N'      '#TEMP:24@H'      1.0200000000000001e-10    
'#TEMP:25@N'      '#TEMP:25@H'      1.0200000000000001e-10    
'#TEMP:26@N'      '#TEMP:26@H'      1.0200000000000001e-10    
'#TEMP:27@N'      '#TEMP:27@H'      1.0200000000000001e-10    
'#TEMP:28@N'      '#TEMP:28@H'      1.0200000000000001e-10    
'#TEMP:29@N'      '#TEMP:29@H'      1.0200000000000001e-10    
'#TEMP:30@N'      '#TEMP:30@H'      1.0200000000000001e-10    
'#TEMP:31@N'      '#TEMP:31@H'      1.0200000000000001e-10    
'#TEMP:32@N'      '#TEMP:32@H'      1.0200000000000001e-10    
'#TEMP:33@N'      '#TEMP:33@H'      1.0200000000000001e-10    
'#TEMP:34@N'      '#TEMP:34@H'      1.0200000000000001e-10    
'#TEMP:35@N'      '#TEMP:35@H'      1.0200000000000001e-10    
'#TEMP:36@N'      '#TEMP:36@H'      1.0200000000000001e-10    
'#TEMP:37@N'      '#TEMP:37@H'      1.0200000000000001e-10    
'#TEMP:38@N'      '#TEMP:38@H'      1.0200000000000001e-10    
'#TEMP:39@N'      '#TEMP:39@H'      1.0200000000000001e-10    
'#TEMP:40@N'      '#TEMP:40@H'      1.0200000000000001e-10    
'#TEMP:41@N'      '#TEMP:41@H'      1.0200000000000001e-10    
'#TEMP:42@N'      '#TEMP:42@H'      1.0200000000000001e-10    
'#TEMP:43@N'      '#TEMP:43@H'      1.0200000000000001e-10    
'#TEMP:45@N'      '#TEMP:45@H'      1.0200000000000001e-10    
'#TEMP:46@N'      '#TEMP:46@H'      1.0200000000000001e-10    
'#TEMP:47@N'      '#TEMP:47@H'      1.0200000000000001e-10    
'#TEMP:48@N'      '#TEMP:48@H'      1.0200000000000001e-10    
'#TEMP:49@N'      '#TEMP:49@H'      1.0200000000000001e-10    
'#TEMP:50@N'      '#TEMP:50@H'      1.0200000000000001e-10    
'#TEMP:51@N'      '#TEMP:51@H'      1.0200000000000001e-10    
'#TEMP:52@N'      '#TEMP:52@H'      1.0200000000000001e-10    
'#TEMP:53@N'      '#TEMP:53@H'      1.0200000000000001e-10    
'#TEMP:54@N'      '#TEMP:54@H'      1.0200000000000001e-10    
'#TEMP:55@N'      '#TEMP:55@H'      1.0200000000000001e-10    
'#TEMP:56@N'      '#TEMP:56@H'      1.0200000000000001e-10    
'#TEMP:57@N'      '#TEMP:57@H'      1.0200000000000001e-10    
'#TEMP:58@N'      '#TEMP:58@H'      1.0200000000000001e-10    
'#TEMP:59@N'      '#TEMP:59@H'      1.0200000000000001e-10    
'#TEMP:60@N'      '#TEMP:60@H'      1.0200000000000001e-10    
'#TEMP:61@N'      '#TEMP:61@H'      1.0200000000000001e-10    
'#TEMP:62@N'      '#TEMP:62@H'      1.0200000000000001e-10    
'#TEMP:63@N'      '#TEMP:63@H'      1.0200000000000001e-10    
'#TEMP:64@N'      '#TEMP:64@H'      1.0200000000000001e-10    
'#TEMP:65@N'      '#TEMP:65@H'      1.0200000000000001e-10    
'#TEMP:66@N'      '#TEMP:66@H'      1.0200000000000001e-10    
'#TEMP:67@N'      '#TEMP:67@H'      1.0200000000000001e-10    
'#TEMP:68@N'      '#TEMP:68@H'      1.0200000000000001e-10    
'#TEMP:69@N'      '#TEMP:69@H'      1.0200000000000001e-10    
'#TEMP:70@N'      '#TEMP:70@H'      1.0200000000000001e-10    
'#TEMP:71@N'      '#TEMP:71@H'      1.0200000000000001e-10    
'#TEMP:72@N'      '#TEMP:72@H'      1.0200000000000001e-10    
'#TEMP:73@N'      '#TEMP:73@H'      1.0200000000000001e-10    
'#TEMP:74@N'      '#TEMP:74@H'      1.0200000000000001e-10    
'#TEMP:75@N'      '#TEMP:75@H'      1.0200000000000001e-10    
'#TEMP:76@N'      '#TEMP:76@H'      1.0200000000000001e-10    
'#TEMP:77@N'      '#TEMP:77@H'      1.0200000000000001e-10    
'#TEMP:78@N'      '#TEMP:78@H'      1.0200000000000001e-10    
'#TEMP:79@N'      '#TEMP:79@H'      1.0200000000000001e-10    
'#TEMP:80@N'      '#TEMP:80@H'      1.0200000000000001e-10    
'#TEMP:81@N'      '#TEMP:81@H'      1.0200000000000001e-10    
'#TEMP:82@N'      '#TEMP:82@H'      1.0200000000000001e-10    
'#TEMP:83@N'      '#TEMP:83@H'      1.0200000000000001e-10    
'#TEMP:84@N'      '#TEMP:84@H'      1.0200000000000001e-10    
'#TEMP:85@N'      '#TEMP:85@H'      1.0200000000000001e-10    
'#TEMP:87@N'      '#TEMP:87@H'      1.0200000000000001e-10    
'#TEMP:88@N'      '#TEMP:88@H'      1.0200000000000001e-10    
'#TEMP:89@N'      '#TEMP:89@H'      1.0200000000000001e-10    
'#TEMP:90@N'      '#TEMP:90@H'      1.0200000000000001e-10    
'#TEMP:91@N'      '#TEMP:91@H'      1.0200000000000001e-10    
'#TEMP:93@N'      '#TEMP:93@H'      1.0200000000000001e-10    
'#TEMP:94@N'      '#TEMP:94@H'      1.0200000000000001e-10    
'#TEMP:95@N'      '#TEMP:95@H'      1.0200000000000001e-10    
'#TEMP:96@N'      '#TEMP:96@H'      1.0200000000000001e-10    
'#TEMP:97@N'      '#TEMP:97@H'      1.0200000000000001e-10    
'#TEMP:98@N'      '#TEMP:98@H'      1.0200000000000001e-10    
'#TEMP:99@N'      '#TEMP:99@H'      1.0200000000000001e-10    
'#TEMP:100@N'     '#TEMP:100@H'     1.0200000000000001e-10    
'#TEMP:101@N'     '#TEMP:101@H'     1.0200000000000001e-10    
'#TEMP:102@N'     '#TEMP:102@H'     1.0200000000000001e-10    
'#TEMP:103@N'     '#TEMP:103@H'     1.0200000000000001e-10    
'#TEMP:104@N'     '#TEMP:104@H'     1.0200000000000001e-10    
'#TEMP:105@N'     '#TEMP:105@H'     1.0200000000000001e-10    
'#TEMP:106@N'     '#TEMP:106@H'     1.0200000000000001e-10    
'#TEMP:107@N'     '#TEMP:107@H'     1.0200000000000001e-10    
'#TEMP:108@N'     '#TEMP:108@H'     1.0200000000000001e-10    
'#TEMP:109@N'     '#TEMP:109@H'     1.0200000000000001e-10    
'#TEMP:110@N'     '#TEMP:110@H'     1.0200000000000001e-10    
'#TEMP:111@N'     '#TEMP:111@H'     1.0200000000000001e-10    
'#TEMP:112@N'     '#TEMP:112@H'     1.0200000000000001e-10    
'#TEMP:113@N'     '#TEMP:113@H'     1.0200000000000001e-10    
'#TEMP:114@N'     '#TEMP:114@H'     1.0200000000000001e-10    
'#TEMP:115@N'     '#TEMP:115@H'     1.0200000000000001e-10    
'#TEMP:116@N'     '#TEMP:116@H'     1.0200000000000001e-10    
'#TEMP:117@N'     '#TEMP:117@H'     1.0200000000000001e-10    
'#TEMP:118@N'     '#TEMP:118@H'     1.0200000000000001e-10    
'#TEMP:119@N'     '#TEMP:119@H'     1.0200000000000001e-10    
'#TEMP:120@N'     '#TEMP:120@H'     1.0200000000000001e-10    
'#TEMP:121@N'     '#TEMP:121@H'     1.0200000000000001e-10    
'#TEMP:122@N'     '#TEMP:122@H'     1.0200000000000001e-10    
'#TEMP:123@N'     '#TEMP:123@H'     1.0200000000000001e-10    
'#TEMP:124@N'     '#TEMP:124@H'     1.0200000000000001e-10    
'#TEMP:125@N'     '#TEMP:125@H'     1.0200000000000001e-10    
'#TEMP:127@N'     '#TEMP:127@H'     1.0200000000000001e-10    
'#TEMP:128@N'     '#TEMP:128@H'     1.0200000000000001e-10    
'#TEMP:129@N'     '#TEMP:129@H'     1.0200000000000001e-10    
'#TEMP:130@N'     '#TEMP:130@H'     1.0200000000000001e-10    
'#TEMP:131@N'     '#TEMP:131@H'     1.0200000000000001e-10    
'#TEMP:132@N'     '#TEMP:132@H'     1.0200000000000001e-10    
'#TEMP:133@N'     '#TEMP:133@H'     1.0200000000000001e-10    
'#TEMP:134@N'     '#TEMP:134@H'     1.0200000000000001e-10    
'#TEMP:136@N'     '#TEMP:136@H'     1.0200000000000001e-10    
'#TEMP:138@N'     '#TEMP:138@H'     1.0200000000000001e-10    
'#TEMP:139@N'     '#TEMP:139@H'     1.0200000000000001e-10    
'#TEMP:140@N'     '#TEMP:140@H'     1.0200000000000001e-10    
'#TEMP:141@N'     '#TEMP:141@H'     1.0200000000000001e-10    
'#TEMP:142@N'     '#TEMP:142@H'     1.0200000000000001e-10    
'#TEMP:143@N'     '#TEMP:143@H'     1.0200000000000001e-10    
'#TEMP:144@N'     '#TEMP:144@H'     1.0200000000000001e-10    
'#TEMP:145@N'     '#TEMP:145@H'     1.0200000000000001e-10    
'#TEMP:146@N'     '#TEMP:146@H'     1.0200000000000001e-10    
'#TEMP:147@N'     '#TEMP:147@H'     1.0200000000000001e-10    
'#TEMP:148@N'     '#TEMP:148@H'     1.0200000000000001e-10    
'#TEMP:149@N'     '#TEMP:149@H'     1.0200000000000001e-10    
'#TEMP:150@N'     '#TEMP:150@H'     1.0200000000000001e-10    
'#TEMP:151@N'     '#TEMP:151@H'     1.0200000000000001e-10    
'#TEMP:152@N'     '#TEMP:152@H'     1.0200000000000001e-10    
'#TEMP:153@N'     '#TEMP:153@H'     1.0200000000000001e-10    
'#TEMP:154@N'     '#TEMP:154@H'     1.0200000000000001e-10    
'#TEMP:155@N'     '#TEMP:155@H'     1.0200000000000001e-10    
'#TEMP:156@N'     '#TEMP:156@H'     1.0200000000000001e-10    
'#TEMP:157@N'     '#TEMP:157@H'     1.0200000000000001e-10    
'#TEMP:158@N'     '#TEMP:158@H'     1.0200000000000001e-10    
'#TEMP:159@N'     '#TEMP:159@H'     1.0200000000000001e-10    
'#TEMP:33@NE1'    '#TEMP:33@HE1'    1.0200000000000001e-10    
'#TEMP:48@NE1'    '#TEMP:48@HE1'    1.0200000000000001e-10    
'#TEMP:49@NE1'    '#TEMP:49@HE1'    1.0200000000000001e-10    
'#TEMP:59@NE1'    '#TEMP:59@HE1'    1.0200000000000001e-10    
'#TEMP:98@NE1'    '#TEMP:98@HE1'    1.0200000000000001e-10    

relax> interatom.unit_vectors(ave=True)
Averaging all vectors.
Calculated 1 N-H unit vector between the spins '#TEMP:3@N' and '#TEMP:3@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:4@N' and '#TEMP:4@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:5@N' and '#TEMP:5@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:6@N' and '#TEMP:6@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:7@N' and '#TEMP:7@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:8@N' and '#TEMP:8@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:9@N' and '#TEMP:9@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:10@N' and '#TEMP:10@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:11@N' and '#TEMP:11@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:13@N' and '#TEMP:13@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:14@N' and '#TEMP:14@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:15@N' and '#TEMP:15@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:16@N' and '#TEMP:16@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:17@N' and '#TEMP:17@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:18@N' and '#TEMP:18@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:19@N' and '#TEMP:19@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:20@N' and '#TEMP:20@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:21@N' and '#TEMP:21@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:22@N' and '#TEMP:22@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:23@N' and '#TEMP:23@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:24@N' and '#TEMP:24@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:25@N' and '#TEMP:25@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:26@N' and '#TEMP:26@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:27@N' and '#TEMP:27@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:28@N' and '#TEMP:28@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:29@N' and '#TEMP:29@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:30@N' and '#TEMP:30@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:31@N' and '#TEMP:31@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:32@N' and '#TEMP:32@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:33@N' and '#TEMP:33@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:34@N' and '#TEMP:34@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:35@N' and '#TEMP:35@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:36@N' and '#TEMP:36@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:37@N' and '#TEMP:37@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:38@N' and '#TEMP:38@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:39@N' and '#TEMP:39@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:40@N' and '#TEMP:40@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:41@N' and '#TEMP:41@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:42@N' and '#TEMP:42@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:43@N' and '#TEMP:43@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:45@N' and '#TEMP:45@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:46@N' and '#TEMP:46@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:47@N' and '#TEMP:47@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:48@N' and '#TEMP:48@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:49@N' and '#TEMP:49@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:50@N' and '#TEMP:50@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:51@N' and '#TEMP:51@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:52@N' and '#TEMP:52@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:53@N' and '#TEMP:53@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:54@N' and '#TEMP:54@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:55@N' and '#TEMP:55@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:56@N' and '#TEMP:56@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:57@N' and '#TEMP:57@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:58@N' and '#TEMP:58@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:59@N' and '#TEMP:59@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:60@N' and '#TEMP:60@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:61@N' and '#TEMP:61@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:62@N' and '#TEMP:62@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:63@N' and '#TEMP:63@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:64@N' and '#TEMP:64@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:65@N' and '#TEMP:65@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:66@N' and '#TEMP:66@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:67@N' and '#TEMP:67@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:68@N' and '#TEMP:68@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:69@N' and '#TEMP:69@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:70@N' and '#TEMP:70@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:71@N' and '#TEMP:71@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:72@N' and '#TEMP:72@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:73@N' and '#TEMP:73@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:74@N' and '#TEMP:74@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:75@N' and '#TEMP:75@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:76@N' and '#TEMP:76@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:77@N' and '#TEMP:77@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:78@N' and '#TEMP:78@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:79@N' and '#TEMP:79@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:80@N' and '#TEMP:80@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:81@N' and '#TEMP:81@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:82@N' and '#TEMP:82@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:83@N' and '#TEMP:83@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:84@N' and '#TEMP:84@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:85@N' and '#TEMP:85@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:87@N' and '#TEMP:87@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:88@N' and '#TEMP:88@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:89@N' and '#TEMP:89@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:90@N' and '#TEMP:90@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:91@N' and '#TEMP:91@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:93@N' and '#TEMP:93@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:94@N' and '#TEMP:94@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:95@N' and '#TEMP:95@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:96@N' and '#TEMP:96@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:97@N' and '#TEMP:97@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:98@N' and '#TEMP:98@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:99@N' and '#TEMP:99@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:100@N' and '#TEMP:100@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:101@N' and '#TEMP:101@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:102@N' and '#TEMP:102@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:103@N' and '#TEMP:103@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:104@N' and '#TEMP:104@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:105@N' and '#TEMP:105@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:106@N' and '#TEMP:106@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:107@N' and '#TEMP:107@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:108@N' and '#TEMP:108@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:109@N' and '#TEMP:109@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:110@N' and '#TEMP:110@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:111@N' and '#TEMP:111@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:112@N' and '#TEMP:112@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:113@N' and '#TEMP:113@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:114@N' and '#TEMP:114@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:115@N' and '#TEMP:115@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:116@N' and '#TEMP:116@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:117@N' and '#TEMP:117@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:118@N' and '#TEMP:118@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:119@N' and '#TEMP:119@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:120@N' and '#TEMP:120@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:121@N' and '#TEMP:121@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:122@N' and '#TEMP:122@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:123@N' and '#TEMP:123@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:124@N' and '#TEMP:124@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:125@N' and '#TEMP:125@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:127@N' and '#TEMP:127@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:128@N' and '#TEMP:128@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:129@N' and '#TEMP:129@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:130@N' and '#TEMP:130@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:131@N' and '#TEMP:131@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:132@N' and '#TEMP:132@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:133@N' and '#TEMP:133@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:134@N' and '#TEMP:134@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:136@N' and '#TEMP:136@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:138@N' and '#TEMP:138@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:139@N' and '#TEMP:139@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:140@N' and '#TEMP:140@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:141@N' and '#TEMP:141@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:142@N' and '#TEMP:142@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:143@N' and '#TEMP:143@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:144@N' and '#TEMP:144@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:145@N' and '#TEMP:145@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:146@N' and '#TEMP:146@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:147@N' and '#TEMP:147@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:148@N' and '#TEMP:148@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:149@N' and '#TEMP:149@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:150@N' and '#TEMP:150@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:151@N' and '#TEMP:151@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:152@N' and '#TEMP:152@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:153@N' and '#TEMP:153@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:154@N' and '#TEMP:154@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:155@N' and '#TEMP:155@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:156@N' and '#TEMP:156@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:157@N' and '#TEMP:157@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:158@N' and '#TEMP:158@H'.
Calculated 1 N-H unit vector between the spins '#TEMP:159@N' and '#TEMP:159@H'.
Calculated 1 NE1-HE1 unit vector between the spins '#TEMP:33@NE1' and '#TEMP:33@HE1'.
Calculated 1 NE1-HE1 unit vector between the spins '#TEMP:48@NE1' and '#TEMP:48@HE1'.
Calculated 1 NE1-HE1 unit vector between the spins '#TEMP:49@NE1' and '#TEMP:49@HE1'.
Calculated 1 NE1-HE1 unit vector between the spins '#TEMP:59@NE1' and '#TEMP:59@HE1'.
Calculated 1 NE1-HE1 unit vector between the spins '#TEMP:98@NE1' and '#TEMP:98@HE1'.

relax> value.set(val=-0.00017199999999999998, param='csa', index=0, spin_id='@N*', error=False, force=True)

03_save_state_inspect_GUI.py - Inspect data in GUI

The GUI can be a good place to inspect the setup and files.

Copy 02_read_data.py to 03_save_state_inspect_GUI.py and add:

See file content
# Analysis variables.
#####################
# The model-free models.  Do not change these unless absolutely necessary, the protocol is likely to fail if these are changed.
MF_MODELS = ['m0', 'm1', 'm2', 'm3', 'm4', 'm5', 'm6', 'm7', 'm8', 'm9']
#MF_MODELS = ['m1', 'm2']
LOCAL_TM_MODELS = ['tm0', 'tm1', 'tm2', 'tm3', 'tm4', 'tm5', 'tm6', 'tm7', 'tm8', 'tm9']

# The grid search size (the number of increments per dimension).
GRID_INC = 11

# The optimisation technique. Standard is: min_algor='newton' : and cannot be changed in the GUI.
MIN_ALGOR = 'newton'

# The number of Monte Carlo simulations to be used for error analysis at the end of the analysis.
#MC_NUM = 500
MC_NUM = 20

# The diffusion model. Standard is 'Fully automated', which means: DIFF_MODEL=['local_tm', 'sphere', 'prolate', 'oblate', 'ellipsoid', 'final']
# 'local_tm', 'sphere', ''prolate', 'oblate', 'ellipsoid', or 'final'
#DIFF_MODEL = 'local_tm'
DIFF_MODEL = ['local_tm', 'sphere', 'prolate', 'oblate', 'ellipsoid', 'final']

# The maximum number of iterations for the global iteration.  Set to None, then the algorithm iterates until convergence.
MAX_ITER = None

# Automatic looping over all rounds until convergence (must be a boolean value of True or False). Standard is: conv_loop=True : and cannot be changed in the GUI.
CONV_LOOP = True

# Change some minimise opt params. 
# This goes into: minimise.execute(self.min_algor, func_tol=self.opt_func_tol, max_iter=self.opt_max_iterations)
#####################
#dAuvergne_protocol.opt_func_tol = 1e-5 # Standard:  opt_func_tol = 1e-25   
#dAuvergne_protocol.opt_max_iterations = 1000 # Standard: opt_max_iterations = int(1e7)
dAuvergne_protocol.opt_func_tol = 1e-10 # Standard:  opt_func_tol = 1e-25   
dAuvergne_protocol.opt_max_iterations = int(1e5) # Standard: opt_max_iterations = int(1e7)

#####################################

# The results dir.
var = 'result_03'
results_dir = os.getcwd() + os.sep + var

# Save the state before running. Open and check in GUI!
state.save(state=var+'_ini.bz2', dir=results_dir, force=True)

# To check in GUI
# relax -g
# File -> Open relax state
# In folder "result_03" open "result_03_ini.bz2"
# View -> Data pipe editor
# Right click on pipe, and select "Associate with a new auto-analysis"

Run with

relax 03_save_state_inspect_GUI.py -t 03_save_state_inspect_GUI.log

To check in GUI

  • relax -g
  • File -> Open relax state
  • In folder "result_03" open "result_03_ini.bz2"
  • View -> Data pipe editor
  • Right click on pipe, and select "Associate with a new auto-analysis"

Create input for other programs

Relax can create input files to other program, to help verify the results.

  • dasha

04_run_default_with_tolerance_lim.py - Try fast run

Now we try a fast run, to see if everything is setup

Copy 03_save_state_inspect_GUI.py to 04_run_default_with_tolerance_lim.py and modify last lines:

See file content
# The results dir.
var = 'result_04'
results_dir = os.getcwd() + os.sep + var

# Save the state before running. Open and check in GUI!
state.save(state=var+'_ini.bz2', dir=results_dir, force=True)

# To check in GUI
# relax -g
# File -> Open relax state
# In folder "result_03" open "result_03_ini.bz2"
# View -> Data pipe editor
# Right click on pipe, and select "Associate with a new auto-analysis"

dAuvergne_protocol(pipe_name=name, pipe_bundle=bundle_name, results_dir=results_dir, diff_model=DIFF_MODEL, mf_models=MF_MODELS, local_tm_models=LOCAL_TM_MODELS, grid_inc=GRID_INC, min_algor=MIN_ALGOR, mc_sim_num=MC_NUM, max_iter=MAX_ITER, conv_loop=CONV_LOOP)

Before running, is worth to note, which values are NOT set to default values in the GUI.

  • dAuvergne_protocol.opt_func_tol = 1e-10 # Standard: opt_func_tol = 1e-25
  • dAuvergne_protocol.opt_max_iterations = int(1e5) # Standard: opt_max_iterations = int(1e7)

These 2 values is used in the minfx python package, and is an instruction to the minimiser function, to continue changing parameter values, UNTIL either the difference in chi2 values between "2 steps" is less than 1e-10, OR if the number all steps is larger than 10^5. It's an instruction not to be tooooo pedantic, here in the exploration phase. When finalising for publication, these values should be set to their standard value.

  • MC_NUM = 20

Number of Monte-Carlo simulations. The protocol will find optimum parameter values in this protocol, but error estimation will not be very reliable. Standard is 500.

We use tmux to make a terminal-session, we can get back to, if our own terminal connection get closed.

  • start a new session: tmux
  • re-attach a detached session: tmux attach

Run with

# Make terminal-session
tmux

relax 04_run_default_with_tolerance_lim.py -t 04_run_default_with_tolerance_lim.log

You can then in another terminal follow the logfile by

less +F 04_run_default_with_tolerance_lim.log
  • To scroll up and down, use keyboard: Ctrl+c
  • To return to follow mode, use keyboard: Shift+f
  • To exit, use keyboard: Ctrl+c and then: q

05_run_def_MC20.py - Try normal run with MC 20

The inspection of the log of the previous run, it seems the prolate cannot converge. It jumps between 2 chi2 values.
Maybe it is because of the NOT default values of optimization, to let us set it back to default.

We have 4 CPU on our lab computers.
So let us assign 1 to a run normal settings, and only MC=20.

Copy 04_run_default_with_tolerance_lim.py to 05_run_def_MC20.py

cp 04_run_default_with_tolerance_lim.py 05_run_def_MC20.py

and modify last lines:

See file content
# The number of Monte Carlo simulations to be used for error analysis at the end of the analysis.
#MC_NUM = 500
MC_NUM = 20

# The diffusion model. Standard is 'Fully automated', which means: DIFF_MODEL=['local_tm', 'sphere', 'prolate', 'oblate', 'ellipsoid', 'final']
# 'local_tm', 'sphere', ''prolate', 'oblate', 'ellipsoid', or 'final'
#DIFF_MODEL = 'local_tm'
DIFF_MODEL = ['local_tm', 'sphere', 'prolate', 'oblate', 'ellipsoid', 'final']

# The maximum number of iterations for the global iteration.  Set to None, then the algorithm iterates until convergence.
MAX_ITER = None

# Automatic looping over all rounds until convergence (must be a boolean value of True or False). Standard is: conv_loop=True : and cannot be changed in the GUI.
CONV_LOOP = True

# Change some minimise opt params. 
# This goes into: minimise.execute(self.min_algor, func_tol=self.opt_func_tol, max_iter=self.opt_max_iterations)
#####################
#dAuvergne_protocol.opt_func_tol = 1e-5 # Standard:  opt_func_tol = 1e-25   
#dAuvergne_protocol.opt_max_iterations = 1000 # Standard: opt_max_iterations = int(1e7)
#dAuvergne_protocol.opt_func_tol = 1e-10 # Standard:  opt_func_tol = 1e-25   
#dAuvergne_protocol.opt_max_iterations = int(1e5) # Standard: opt_max_iterations = int(1e7)

#####################################

# The results dir.
var = 'result_05'
results_dir = os.getcwd() + os.sep + var

# Save the state before running. Open and check in GUI!
state.save(state=var+'_ini.bz2', dir=results_dir, force=True)

# To check in GUI
# relax -g
# File -> Open relax state
# In folder "result_03" open "result_03_ini.bz2"
# View -> Data pipe editor
# Right click on pipe, and select "Associate with a new auto-analysis"

dAuvergne_protocol(pipe_name=name, pipe_bundle=bundle_name, results_dir=results_dir, diff_model=DIFF_MODEL, mf_models=MF_MODELS, local_tm_models=LOCAL_TM_MODELS, grid_inc=GRID_INC, min_algor=MIN_ALGOR, mc_sim_num=MC_NUM, max_iter=MAX_ITER, conv_loop=CONV_LOOP)
  • MC_NUM = 20

Number of Monte-Carlo simulations. The protocol will find optimum parameter values in this protocol, but error estimation will not be very reliable. Standard is 500.

We use tmux to make a terminal-session, we can get back to, if our own terminal connection get closed.

  • start a new session: tmux
  • re-attach a detached session: tmux attach

Run with

# Make terminal-session
tmux

relax 05_run_def_MC20.py -t 05_run_def_MC20.log

You can then in another terminal follow the logfile by

less +F 05_run_def_MC20.log
  • To scroll up and down, use keyboard: Ctrl+c
  • To return to follow mode, use keyboard: Shift+f
  • To exit, use keyboard: Ctrl+c and then: q

06_run_def_MC20_MAX_ITER20.py - Try normal run with MC 20 and MAX_ITER 20

It looks like the prolate has problem with converging.
So let us try a run, where a maximum of 20 rounds of convergence is accepted.
Then hopefully, relax should continue to the other models, if prolate does not converge.

We have 4 CPU on our lab computers.
Let us assign another to a run normal settings, only MC=20 and MAX_ITER=20.

Copy 05_run_def_MC20.py to 06_run_def_MC20_MAX_ITER20.py

cp 05_run_def_MC20.py 06_run_def_MC20_MAX_ITER20.py

and modify last lines:

See file content
# The number of Monte Carlo simulations to be used for error analysis at the end of the analysis.
#MC_NUM = 500
MC_NUM = 20

# The diffusion model. Standard is 'Fully automated', which means: DIFF_MODEL=['local_tm', 'sphere', 'prolate', 'oblate', 'ellipsoid', 'final']
# 'local_tm', 'sphere', ''prolate', 'oblate', 'ellipsoid', or 'final'
#DIFF_MODEL = 'local_tm'
DIFF_MODEL = ['local_tm', 'sphere', 'prolate', 'oblate', 'ellipsoid', 'final']

# The maximum number of iterations for the global iteration.  Set to None, then the algorithm iterates until convergence.
MAX_ITER = 20

# Automatic looping over all rounds until convergence (must be a boolean value of True or False). Standard is: conv_loop=True : and cannot be changed in the GUI.
CONV_LOOP = True

# Change some minimise opt params. 
# This goes into: minimise.execute(self.min_algor, func_tol=self.opt_func_tol, max_iter=self.opt_max_iterations)
#####################
#dAuvergne_protocol.opt_func_tol = 1e-5 # Standard:  opt_func_tol = 1e-25   
#dAuvergne_protocol.opt_max_iterations = 1000 # Standard: opt_max_iterations = int(1e7)
#dAuvergne_protocol.opt_func_tol = 1e-10 # Standard:  opt_func_tol = 1e-25   
#dAuvergne_protocol.opt_max_iterations = int(1e5) # Standard: opt_max_iterations = int(1e7)

#####################################

# The results dir.
var = 'result_06'
results_dir = os.getcwd() + os.sep + var

# Save the state before running. Open and check in GUI!
state.save(state=var+'_ini.bz2', dir=results_dir, force=True)

# To check in GUI
# relax -g
# File -> Open relax state
# In folder "result_03" open "result_03_ini.bz2"
# View -> Data pipe editor
# Right click on pipe, and select "Associate with a new auto-analysis"

dAuvergne_protocol(pipe_name=name, pipe_bundle=bundle_name, results_dir=results_dir, diff_model=DIFF_MODEL, mf_models=MF_MODELS, local_tm_models=LOCAL_TM_MODELS, grid_inc=GRID_INC, min_algor=MIN_ALGOR, mc_sim_num=MC_NUM, max_iter=MAX_ITER, conv_loop=CONV_LOOP)

We use tmux to make a terminal-session, we can get back to, if our own terminal connection get closed.

  • start a new session: tmux new -s relax06
  • re-attach a detached session: tmux a -t relax06

Run with

# Make terminal-session
tmux new -s relax06

relax 06_run_def_MC20_MAX_ITER20.py -t 06_run_def_MC20_MAX_ITER20.log

06_check_intermediate_pymol.pml - Use pymol commands from inspection of 06 run

We get some pymol commands.

Let us try to use these.

Make a 06_check_intermediate_pymol.pml file, with this content.

See file content
# Start settings
reinitialize
bg_color white
set scene_buttons, 1

# Load protein and set name
load energy_1.pdb
prot='prot'
cmd.set_name("energy_1", prot)

# Load tensor pdb
load ./result_06_check_intermediate/final/tensor.pdb

#################################
# Scene 1 :  Make default view
#################################
hide everything, prot
show_as cartoon, prot
zoom prot and polymer

scene F1, store, load of data, view=1

################################
# Scenes: We will go through the order like this
# 's2', 's2f', 's2s', 'amp_fast', 'amp_slow', 'te', 'tf', 'ts', 'time_fast', 'time_slow', 'rex'
# s2: S2, the model-free generalised order parameter (S2 = S2f.S2s).
# s2f: S2f, the faster motion model-free generalised order parameter.
# s2s: S2s, the slower motion model-free generalised order parameter.
# amp_fast: 
# amp_slow: 
# te: Single motion effective internal correlation time (seconds).
# tf: Faster motion effective internal correlation time (seconds).
# ts: Slower motion effective internal correlation time (seconds).
# time_fast: 
# time_slow:
# rex: Chemical exchange relaxation (sigma_ex = Rex / omega**2). 

#modes = ['s2']
#modes = ['s2', 's2f']
modes = ['s2', 's2f', 's2s', 'amp_fast', 'amp_slow', 'te', 'tf', 'ts', 'time_fast', 'time_slow', 'rex']
fdir = "./result_06_check_intermediate/final/pymol"

python
# File placement
if False:
    for i, mode in enumerate(modes):
        # Make name
        protn = '%s_%s' % (prot, mode)

        # Loop over file lines
        fname = fdir + "/%s.pml"%mode
        fname_out = fdir + "/0_mod_%s.pml"%mode
        f_out = open(fname_out, "w")
        with open(fname) as f:
            for line in f:
                line_cmd = ""
                # Add to end of line, depending on command
                if line[0] == "\n":
                    line_add = ""
                elif line[0:4] == "hide":
                    line_add = " %s"%protn

                # All not changed
                elif line[0:8] == "bg_color":
                    line_add = ""
                elif line[0:9] == "set_color":
                    line_add = ""
                elif line[0:6] == "delete":
                    line_add = ""

                else:
                    line_add =  " and %s"%protn
                # Modify line
                line_cmd = line.strip() + line_add + "\n"

                # Write the line
                f_out.write(line_cmd)
            f_out.close()
python end 

# Make pymol objects
python
for i, mode in enumerate(modes):
    protn = '%s_%s' % (prot, mode)
    cmd.copy(protn, prot)
    
    cmd.scene("F1")
    cmd.disable(prot)
    cmd.enable(protn)
    cmd.scene("F%i"%(i+2), "store", mode, view=0)
python end

#################################
# Scenes
# #modes = ['s2', 's2f', 's2s', 'amp_fast', 'amp_slow', 'te', 'tf', 'ts', 'time_fast', 'time_slow', 'rex']

scene F2
@./result_06_check_intermediate/final/pymol/0_mod_s2.pml
scene F2, store, s2, view=0

scene F3
@./result_06_check_intermediate/final/pymol/0_mod_s2f.pml
scene F3, store, s2f, view=0

scene F4
@./result_06_check_intermediate/final/pymol/0_mod_s2s.pml
scene F4, store, s2s, view=0

scene F5
@./result_06_check_intermediate/final/pymol/0_mod_amp_fast.pml
scene F5, store, amp_fast, view=0

scene F6
@./result_06_check_intermediate/final/pymol/0_mod_amp_slow.pml
scene F6, store, amp_slow, view=0

scene F7
@./result_06_check_intermediate/final/pymol/0_mod_te.pml
scene F7, store, te, view=0

scene F8
@./result_06_check_intermediate/final/pymol/0_mod_tf.pml
scene F8, store, tf, view=0

scene F9
@./result_06_check_intermediate/final/pymol/0_mod_ts.pml
scene F9, store, ts, view=0

scene F10
@./result_06_check_intermediate/final/pymol/0_mod_time_fast.pml
scene F10, store, time_fast, view=0

scene F11
@./result_06_check_intermediate/final/pymol/0_mod_time_slow.pml
scene F11, store, time_slow, view=0

scene F12
@./result_06_check_intermediate/final/pymol/0_mod_rex.pml
scene F12, store, rex, view=0

Run with pymol.

pymol 06_check_intermediate_pymol.pml

# To bug test
pymol -c 06_check_intermediate_pymol.pml

To run on Haddock

Have a look here, how to get standalone python Anaconda linux. Also have a look here OpenMPI.

# SSH in
ssh haddock

# Test with shell
mpirun -np 6 echo "hello world"

# Test with python
mpirun -np 6 python -m mpi4py helloworld

# Test with relax
mpirun -np 6 relax --multi='mpi4py'
# Look for: Processor fabric:  MPI 2.2 running via mpi4py with 5 slave processors & 1 master.  Using MPICH2 1.4.1.

Now we run 04_run_default_with_tolerance_lim.py with more power!
We use tmux to make a terminal-session, we can get back to, if our own terminal connection get closed.

  • start a new session: tmux
  • re-attach a detached session: tmux attach
# Make terminal-session
tmux

# Start relax
mpirun -np 20 relax --multi='mpi4py' 04_run_default_with_tolerance_lim.py -t 04_run_default_with_tolerance_lim.log

Useful commands to log file

While the analysis is running, these commands could be used to check the logfile for errors

### Check convergence 
# For chi2
cat 04_run_default_with_tolerance_lim.log | grep -A 10 "Chi-squared test:"

# For other tests
cat 04_run_default_with_tolerance_lim.log | grep -A 10 "Identical "
cat 04_run_default_with_tolerance_lim.log | grep -A 10 "Identical model-free models test:"
cat 04_run_default_with_tolerance_lim.log | grep -A 10 "Identical diffusion tensor parameter test:"
cat 04_run_default_with_tolerance_lim.log | grep -A 10 "Identical model-free parameter test:"

# To look for not converged errors
# For chi2
cat 04_run_default_with_tolerance_lim.log | grep -B 7 "The chi-squared value has not converged."

# For other tests
cat 04_run_default_with_tolerance_lim.log | grep -B 7 " have not converged."
cat 04_run_default_with_tolerance_lim.log | grep -B 7 "The model-free models have not converged."
cat 04_run_default_with_tolerance_lim.log | grep -B 7 "The diffusion parameters have not converged."
cat 04_run_default_with_tolerance_lim.log | grep -B 7 "The model-free parameters have not converged."

You can then inspect the logfile by less: 10-tips for less

less 04_run_default_with_tolerance_lim.log

To find pattern: We have to escape with \ for special character like: ()[] etc.

# Search forward
/Value \(iter 14\)
/The chi-squared value has not converged

n or N – for next match in forward / previous match in backward

  • To return to follow mode, use keyboard: Shift+f
  • To exit, use keyboard: Ctrl+c and then: q

rsync files

rsync files after completion to Sauron

When a run is completed, then sync files to Sauron file server.

Make a rsync_to_sbinlab.sh file with content

See file content
#!/bin/bash

read -p "Username on sauron :" -r

RUSER=$REPLY
SAURON=10.61.4.60
PROJ=`basename "$PWD"`

FROM=${PWD}
TO=${RUSER}@${SAURON}:/data/sbinlab2/${RUSER}/Downloads/${PROJ}

# -a: "archive"- archive mode; equals -rlptgoD (no -H,-A,-X). syncs recursively and preserves symbolic links, special and device files, modification times, group, owner, and permissions.
# We want to remove the -o and -g options:
# -o, --owner                 preserve owner (super-user only)
# -g, --group                 preserve group
# -rlptD : Instead or
# -a --no-o --no-g  
# -z: Compression over network
# -P: It combines the flags --progress and --partial. The first of these gives you a progress bar for the transfers and the second allows you to resume interrupted transfers:
# -h, Output numbers in a more human-readable format.

# Always double-check your arguments before executing an rsync command.
# -n 

echo "I will now do a DRY RUN, which does not move files"
read -p "Are you sure? y/n :" -n 1 -r
echo ""

if [[ $REPLY =~ ^[Yy]$ ]]; then
  rsync -rlptDPzh -n ${FROM} ${TO} 
else
  echo "Not doing DRY RUN"
fi

echo ""

echo "I will now do the sync of files"
read -p "Are you sure? y/n :" -n 1 -r
echo ""

if [[ $REPLY =~ ^[Yy]$ ]]; then
  rsync -rlptDPzh ${FROM} ${TO}
else
  echo "Not doing anything"
fi

Make it executable and run

chmod +x rsync_to_sbinlab.sh

#run
./rsync_to_sbinlab2.sh

rsync files from BIO to home mac

To inspect from home mac.

Make a rsync_from_bio_to_home.sh file with content

See file content
#!/bin/bash
 
read -p "Username on bio:" -r
 
RUSER=$REPLY
BIO=ssh-bio.science.ku.dk

#PROJ=Desktop/kaare_relax
PROJ=Desktop/kaare_relax/20171010_model_free_HADDOCK
PROJDIR=`basename "$PROJ"`

FROM=${RUSER}@${BIO}:/home/${RUSER}/${PROJ} 
TO=${PWD}/${PROJDIR}

# -a: "archive"- archive mode; equals -rlptgoD (no -H,-A,-X). syncs recursively and preserves symbolic links, special and device files, modification times, group, owner, and permissions.
# We want to remove the -o and -g options:
# -o, --owner                 preserve owner (super-user only)
# -g, --group                 preserve group
# -rlptD : Instead or
# -a --no-o --no-g  
# -z: Compression over network
# -P: It combines the flags --progress and --partial. The first of these gives you a progress bar for the transfers and the second allows you to resume interrupted transfers:
# -h, Output numbers in a more human-readable format.
 
# Always double-check your arguments before executing an rsync command.
# -n 
 
echo "I will now do a DRY RUN, which does not move files"
read -p "Are you sure? y/n :" -n 1 -r
echo ""
 
if [[ $REPLY =~ ^[Yy]$ ]]; then
  rsync -rlptDPzh -n ${FROM} ${TO} 
else
  echo "Not doing DRY RUN"
fi
 
echo ""
 
echo "I will now do the sync of files"
read -p "Are you sure? y/n :" -n 1 -r
echo ""
 
if [[ $REPLY =~ ^[Yy]$ ]]; then
  rsync -rlptDPzh ${FROM} ${TO}
else
  echo "Not doing anything"
fi

Make it executable and run

chmod +x rsync_from_bio_to_home.sh

#run
./rsync_from_bio_to_home.sh

About the protocol

Model I - 'local_tm'
This will optimise the diffusion model whereby all spin of the molecule have a local tm value, i.e. there is no global diffusion tensor. This model needs to be optimised prior to optimising any of the other diffusion models. Each spin is fitted to the multiple model-free models separately, where the parameter tm is included in each model.

Model II - 'sphere'
This will optimise the isotropic diffusion model. Multiple steps are required, an initial optimisation of the diffusion tensor, followed by a repetitive optimisation until convergence of the diffusion tensor. In the relax script UI each of these steps requires this script to be rerun, unless the conv_loop flag is True. In the GUI (graphical user interface), the procedure is repeated automatically until convergence. For the initial optimisation, which will be placed in the directory './sphere/init/', the following steps are used:

  • The model-free models and parameter values for each spin are set to those of diffusion model MI.
  • The local tm parameter is removed from the models.
  • The model-free parameters are fixed and a global spherical diffusion tensor is minimised
  • For the repetitive optimisation, each minimisation is named from 'round_1' onwards. The initial 'round_1' optimisation will extract the diffusion tensor from the results file in './sphere/init/', and the results will be placed in the directory './sphere/round_1/'. Each successive round will take the diffusion tensor from the previous round. The following steps are used:
    • The global diffusion tensor is fixed and the multiple model-free models are fitted to each spin.
    • AIC model selection is used to select the models for each spin.
    • All model-free and diffusion parameters are allowed to vary and a global optimisation of all parameters is carried out.

Model III - 'prolate'
The methods used are identical to those of diffusion model MII, except that an axially symmetric diffusion tensor with Da >= 0 is used. The base directory containing all the results is './prolate/'.

Model IV -'oblate'
The methods used are identical to those of diffusion model MII, except that an axially symmetric diffusion tensor with Da <= 0 is used. The base directory containing all the results is './oblate/'.

Model V - 'ellipsoid'
The methods used are identical to those of diffusion model MII, except that a fully anisotropic diffusion tensor is used (also known as rhombic or asymmetric diffusion). The base directory is './ellipsoid/'

'final'
Once all the diffusion models have converged, the final run can be executed. This is done by setting the variable diff_model to 'final'. This consists of two steps, diffusion tensor model selection, and Monte Carlo simulations. Firstly AIC model selection is used to select between the diffusion tensor models. Monte Carlo simulations are then run solely on this selected diffusion model. Minimisation of the model is bypassed as it is assumed that the model is already fully optimised (if this is not the case the final run is not yet appropriate). The final black-box model-free results will be placed in the file 'final/results'.

See also