Difference between revisions of "B14 full"

From relax wiki
Jump to navigation Jump to search
(Category link updates for the specific analyses.)
(→‎Code: Switch to the {{relax url}} template for the code URLs.)
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
= Intro =
 
 
 
The Baldwin 2014 2-site exact solution relaxation dispersion model for [[SQ CPMG-type data]].  This model is labelled as '''B14 full''' in [[Relaxation dispersion citation for relax|relax]].
 
The Baldwin 2014 2-site exact solution relaxation dispersion model for [[SQ CPMG-type data]].  This model is labelled as '''B14 full''' in [[Relaxation dispersion citation for relax|relax]].
  
Line 64: Line 62:
 
== Parameters ==
 
== Parameters ==
  
The B14 model has the parameters {$R_{2A}^0$, $R_{2B}^0$, $...$, $p_A$, $\Delta\omega$, $k_{ex}$}.
+
The B14 model has the parameters {{{:R2Azero}}, {{:R2Bzero}}, ..., {{:pA}}, {{:Deltaomega}}, {{:kex}}}.
  
 
== Code ==
 
== Code ==
Line 71: Line 69:
 
[https://gna.org/support/?3154 Here is gna.org tracker that followed this code. It includes valuable comments.]
 
[https://gna.org/support/?3154 Here is gna.org tracker that followed this code. It includes valuable comments.]
  
The library code.<br>
+
The library code: {{relax url|path=lib/dispersion/b14.py}}
http://svn.gna.org/viewcvs/*checkout*/relax/trunk/lib/dispersion/b14.py?revision=HEAD
 
  
The target function. The func_B14_full().<br>
+
The target function func_B14_full(): {{relax url|path=target_functions/relax_disp.py}}
http://svn.gna.org/viewcvs/*checkout*/relax/trunk/target_functions/relax_disp.py?revision=HEAD
 
  
 
=== Example graph of test data ===
 
=== Example graph of test data ===
Line 84: Line 80:
 
The reference for the B14 model is:
 
The reference for the B14 model is:
  
* A.J. Baldwin (2014).  An exact solution for R2,eff in CPMG experiments in the case of two site chemical exchange. ''J. Magn. Reson.'', 2014. ([http://dx.doi.org/10.1016/j.jmr.2014.02.023 10.1016/j.jmr.2014.02.023]).
+
* {{#lst:Citations|Baldwin14}}
  
 
== Related models ==
 
== Related models ==
Line 93: Line 89:
  
 
The [[Relaxation dispersion citation for relax|implementation of the B14 full model in relax]] can be seen in the:
 
The [[Relaxation dispersion citation for relax|implementation of the B14 full model in relax]] can be seen in the:
* [http://www.nmr-relax.com/manual/full_B14_2_site_CPMG_model.html relax manual],  
+
* [http://www.nmr-relax.com/manual/The_full_B14_2_site_CPMG_model.html relax manual],  
 
* [http://www.nmr-relax.com/api/3.1/lib.dispersion.b14-module.html API documentation],
 
* [http://www.nmr-relax.com/api/3.1/lib.dispersion.b14-module.html API documentation],
 
* [http://www.nmr-relax.com/analyses/relaxation_dispersion.html#B14_full relaxation dispersion page of the relax website].
 
* [http://www.nmr-relax.com/analyses/relaxation_dispersion.html#B14_full relaxation dispersion page of the relax website].
  
 
== See also ==
 
== See also ==
 +
[[Category:Models]]
 +
[[Category:Dispersion models]]
 
[[Category:Relaxation_dispersion analysis]]
 
[[Category:Relaxation_dispersion analysis]]

Latest revision as of 12:19, 27 October 2017

The Baldwin 2014 2-site exact solution relaxation dispersion model for SQ CPMG-type data. This model is labelled as B14 full in relax.

The advantage of this code will be that you'll always get the right answer provided you've got 2-site exchange, in-phase magnetisation and on-resonance pulses.

Equation

The paper main equation 50
[math] R_{2,\textrm{eff}} = \frac{R_2^A+R_2^B+k_{\textrm{EX}}}{2}-\frac{N_{\textrm{CYC}}}{T_{\textrm{rel}}}\cosh{}^{-1}(v_{1c}) - \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2k_{\textrm{AB}}p_D )\right)} \\ = R_{2,\textrm{eff}}^{\textrm{CR72}} - \frac{1}{T_{\textrm{rel}}}\ln{\left( \frac{1+y}{2} + \frac{1-y}{2\sqrt{v_{1c}^2-1}}(v_2 + 2k_{\textrm{AB}}p_D )\right)} [/math]

Which have these following definitions
[math] v_{1c} = F_0\cosh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\cosh{\left(\tau_{\textrm{CP}}E_2\right)} \\ v_{1s} = F_0\sinh{\left(\tau_{\textrm{CP}}E_0\right)}-F_2\sinh{\left(\tau_{\textrm{CP}}E_2\right)} \\ v_{2}N = v_{1s}\left(O_B-O_A\right)+4O_B F_1^a \sinh{\left(\tau_{\textrm{CP}}E_1\right)} \\ p_D N = v_{1s} + \left(F_1^a+F_1^b\right)\sinh{\left(\tau_{\textrm{CP}}E_1\right)}\\ v_3 = \left( v_2^2 + 4 k_{\textrm{BA}} k_{\textrm{AB}} p_D^2 \right)^{1/2} \\ y = \left( \frac{v_{1c}-v_3}{v_{1c}+v_3} \right)^{N_{\textrm{CYC}}} [/math]

Note, [math] E_2 [/math] is complex. If |x| denotes the complex modulus:
[math] \cosh{\left(\tau_{\textrm{CP}}E_2\right)} = \cos{\left(\tau_{\textrm{CP}}|E_2|\right)} \\ \sinh{\left(\tau_{\textrm{CP}}E_2\right)} = i \sin{\left(\tau_{\textrm{CP}}|E_2|\right)} [/math]

The term [math]p_D[/math] is based on product of the off diagonal elements in the CPMG propagator (Supplementary Section 3).

It is interesting to consider the region of validity of the Carver Richards result. The two results are equal when the correction is zero, which is true when
[math] \sqrt{v_{1c}^2-1} \approx v_2 + 2k_{\textrm{AB}}p_D [/math]
This occurs when [math]k_{\textrm{AB}}p_D[/math] tends to zero, and so [math]v_2=v_3[/math].
Setting [math]k_{\textrm{AB}}p_D[/math] to zero, amounts to neglecting magnetisation that starts on the ground state ensemble and end on the excited state ensemble and vice versa.
This will be a good approximation when [math]p_A \gg p_B[/math].
In practise, significant deviations from the Carver Richards equation can be incurred if [math]p_B \gt 1\%[/math].
Incorporation of the correction term into equation (50), results in an improved description of the CPMG experiment over the Carver Richards equation.

Equation compared to Carver Richards 72

Please see the relax summary of the model parameters here.

These definitions comes from the papers "Supplementary Section 4. Relation to Carver Richards equation".

[math] \tau_{\textrm{CP}} = \frac{1}{4\nu_\textrm{CPMG}} \\ \alpha_- = R_2^A - R_2^B + k_{\textrm{AB}} - k_{\textrm{BA}} \\ \zeta = 2 \Delta \omega \, \alpha_- = h_1\\ \Psi = \alpha_-^2 + 4 k_{\textrm{BA}} k_{\textrm{AB}} - \Delta \omega^2 = h_2\\ \xi = \frac{2\tau_{\textrm{CP}}}{\sqrt{2}}\sqrt{\Psi + \sqrt{\Psi^2 + \zeta^2}} = 2h_3 \tau_{\textrm{CP}} = \tau_{\textrm{CP}}E_0\\ \eta = \frac{2\tau_{\textrm{CP}}}{\sqrt{2}}\sqrt{-\Psi + \sqrt{\Psi^2 + \zeta^2}} = 2h_4 \tau_{\textrm{CP}} = \tau_{\textrm{CP}}E_2\\ D_+=\frac{1}{2}\left(1+\frac{\Psi+2\Delta \omega^2}{\sqrt{\Psi^2+\zeta^2}} \right) = F_0 \\ D_-=\frac{1}{2}\left(-1+\frac{\Psi+2\Delta \omega^2}{\sqrt{\Psi^2+\zeta^2}} \right) = F_2 [/math]

Physical meanings:
[math]\xi[/math] and [math]\eta[/math] are differences of the real and imaginary components of the free precession frequencies [math]f_{00}[/math] and [math]f_{11}[/math] (equation (41)).
[math]D_+[/math] and [math]D_-[/math] are the stay/stay ([math]F_{0}[/math]), and swap/swap ([math]F_{2}[/math]) coefficients (equation (36)).
[math]\zeta[/math] and [math]\Psi[/math] are parameters that enable the free precession frequencies to be written in a more concise form (equation (12)).
Note that in reference 2 (10.1016/S0076-6879(01)39315-1), in equation 25, the definition used for [math]\tau_{\textrm{CP}}[/math] is twice that used in this work but is otherwise identical.

Parameters

The B14 model has the parameters {R2A0, R2B0, ..., pA, Δω, kex}.

Code

Commits that created the code, approx 20-30 commits, with corrections.

Here is gna.org tracker that followed this code. It includes valuable comments.

The library code: https://sourceforge.net/p/nmr-relax/code/ci/master/tree/lib/dispersion/b14.py

The target function func_B14_full(): https://sourceforge.net/p/nmr-relax/code/ci/master/tree/target_functions/relax_disp.py

Example graph of test data

Graph from systemtest "relax -s Relax_disp.test_baldwin_synthetic"

Reference

The reference for the B14 model is:

  • Baldwin A. J. (2014). An exact solution for R2,eff in CPMG experiments in the case of two site chemical exchange. J. Magn. Reson., 244, 114-124. (DOI: 10.1016/j.jmr.2014.02.023)

Related models

The B14 model is a linear correction to the CR72 model, and algorithms based on this have significant advantages in both precision and speed over existing formulaic approaches.

Links

The implementation of the B14 full model in relax can be seen in the:

See also