Difference between revisions of "Calculate jacobian hessian matrix in sympy exponential decay"

From relax wiki
Jump to navigation Jump to search
 
Line 271: Line 271:
 
""" % (d2_chi2_d_r2eff_d_r2eff,d2_chi2_d_r2eff_d_i0, d2_chi2_d_i0_d_r2eff, d2_chi2_d_i0_d_i0) )
 
""" % (d2_chi2_d_r2eff_d_r2eff,d2_chi2_d_r2eff_d_i0, d2_chi2_d_i0_d_r2eff, d2_chi2_d_i0_d_i0) )
 
}}
 
}}
 +
 +
[[Category:Analysis techniques]]

Latest revision as of 21:48, 21 October 2020

Calculate Jacobian and Hessian matrix in python sympy for exponential decay function

See also:

  1. https://en.wikipedia.org/wiki/Propagation_of_uncertainty
  2. http://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
  3. http://en.wikipedia.org/wiki/Hessian_matrix
  4. http://maxima-online.org/articles/hessian.html
  5. http://certik.github.io/scipy-2013-tutorial/html/tutorial/basic_operations.html
  6. http://scipy-lectures.github.io/advanced/sympy.html
  7. http://docs.sympy.org/dev/gotchas.html
  8. https://github.com/sympy/sympy/wiki/Faq

Sumpy python installation

Consider for example installing Enthought Canopy

Tutorial with function for weighted difference between function evaluation with fitted parameters and measured values.

Created by:

Troels Emtekær Linnet
PhD student
Copenhagen University
SBiNLab

Tutorial with quadratic chi2 function

Created by:

Troels Emtekær Linnet
PhD student
Copenhagen University
SBiNLab