Difference between revisions of "Citations"

From relax wiki
Jump to navigation Jump to search
(Shifted the year parameter in all references to its position in the {{citation}} template.)
 
(5 intermediate revisions by the same user not shown)
Line 6: Line 6:
 
| journal    = J. Magn. Reson.
 
| journal    = J. Magn. Reson.
 
| volume    = 209
 
| volume    = 209
| number    = 2
+
| issue      = 2
 
| page_start = 183
 
| page_start = 183
 
| page_end  = 194
 
| page_end  = 194
Line 34: Line 34:
 
| doi        = 10.1007/s10858-011-9509-1
 
| doi        = 10.1007/s10858-011-9509-1
 
}}<section end=Bieri11/>
 
}}<section end=Bieri11/>
 +
 +
* <section begin=BieriGooley11/>{{citation
 +
| authors    = Bieri, M. and Gooley, P.
 +
| title      = Automated NMR relaxation dispersion data analysis using NESSY.
 +
| journal    = BMC Bioinformatics
 +
| volume    = 12
 +
| page_start = 1
 +
| page_end  = 10
 +
| year      = 2011
 +
| doi        = 10.1186/1471-2105-12-421
 +
}}<section end=BieriGooley11/>
  
 
* <section begin=CarverRichards72/>{{citation
 
* <section begin=CarverRichards72/>{{citation
Line 40: Line 51:
 
| journal    = J. Magn. Reson.
 
| journal    = J. Magn. Reson.
 
| volume    = 6
 
| volume    = 6
| number    = 1
+
| issue      = 1
 
| page_start = 89
 
| page_start = 89
 
| page_end  = 105
 
| page_end  = 105
Line 52: Line 63:
 
| journal    = J. Am. Chem. Soc.
 
| journal    = J. Am. Chem. Soc.
 
| volume    = 112
 
| volume    = 112
| number    = 12
+
| issue      = 12
 
| page_start = 4989
 
| page_start = 4989
 
| page_end  = 4991
 
| page_end  = 4991
Line 75: Line 86:
 
| journal    = J. Biomol. NMR
 
| journal    = J. Biomol. NMR
 
| volume    = 25
 
| volume    = 25
| number    = 1
+
| issue      = 1
 
| page_start = 25
 
| page_start = 25
 
| page_end  = 39
 
| page_end  = 39
Line 87: Line 98:
 
| journal    = J. Biomol. NMR
 
| journal    = J. Biomol. NMR
 
| volume    = 35
 
| volume    = 35
| number    = 2
+
| issue      = 2
 
| page_start = 117
 
| page_start = 117
 
| page_end  = 135
 
| page_end  = 135
Line 99: Line 110:
 
| journal    = Mol. BioSyst.
 
| journal    = Mol. BioSyst.
 
| volume    = 3
 
| volume    = 3
| number    = 7
+
| issue      = 7
 
| page_start = 483
 
| page_start = 483
 
| page_end  = 494
 
| page_end  = 494
Line 111: Line 122:
 
| journal    = J. Biomol. NMR
 
| journal    = J. Biomol. NMR
 
| volume    = 40
 
| volume    = 40
| number    = 2
+
| issue      = 2
 
| page_start = 107
 
| page_start = 107
 
| page_end  = 119
 
| page_end  = 119
Line 123: Line 134:
 
| journal    = J. Biomol. NMR
 
| journal    = J. Biomol. NMR
 
| volume    = 40
 
| volume    = 40
| number    = 2
+
| issue      = 2
 
| page_start = 121
 
| page_start = 121
 
| page_end  = 133
 
| page_end  = 133
Line 135: Line 146:
 
| journal    = J. Biomol. NMR
 
| journal    = J. Biomol. NMR
 
| volume    = 40
 
| volume    = 40
| number    = 2
+
| issue      = 2
 
| page_start = 107
 
| page_start = 107
 
| page_end  = 133
 
| page_end  = 133
Line 148: Line 159:
 
| journal    = J. Magn. Reson.
 
| journal    = J. Magn. Reson.
 
| volume    = 104
 
| volume    = 104
| number    = 3
+
| issue      = 3
 
| page_start = 266
 
| page_start = 266
 
| page_end  = 275
 
| page_end  = 275
Line 156: Line 167:
  
 
* <section begin=Erdelyi11/>{{citation
 
* <section begin=Erdelyi11/>{{citation
| authors    = Erdelyi, M., d'Auvergne, E., Navarro-Vazquez, A., Leonov, A., and Griesinger, C.
+
| authors    = Erdélyi, M., d'Auvergne, E., Navarro-Vázquez, A., Leonov, A., and Griesinger, C.
 
| title      = Dynamics of the glycosidic bond: conformational space of lactose.
 
| title      = Dynamics of the glycosidic bond: conformational space of lactose.
 
| journal    = Chem. Eur. J.
 
| journal    = Chem. Eur. J.
 
| volume    = 17
 
| volume    = 17
| number    = 34
+
| issue      = 34
 
| page_start = 9368
 
| page_start = 9368
 
| page_end  = 9376
 
| page_end  = 9376
Line 172: Line 183:
 
| journal    = Structure
 
| journal    = Structure
 
| volume    = 9
 
| volume    = 9
| number    = 3
+
| issue      = 3
 
| page_start = 185
 
| page_start = 185
 
| page_end  = 195
 
| page_end  = 195
Line 184: Line 195:
 
| journal    = Biochemistry
 
| journal    = Biochemistry
 
| volume    = 33
 
| volume    = 33
| number    = 19
+
| issue      = 19
 
| page_start = 5984
 
| page_start = 5984
 
| page_end  = 6003
 
| page_end  = 6003
Line 196: Line 207:
 
| journal    = J. Am. Chem. Soc.
 
| journal    = J. Am. Chem. Soc.
 
| volume    = 120
 
| volume    = 120
| number    = 42
+
| issue      = 42
 
| page_start = 10947
 
| page_start = 10947
 
| page_end  = 10952
 
| page_end  = 10952
Line 208: Line 219:
 
| journal    = J. Am. Chem. Soc.
 
| journal    = J. Am. Chem. Soc.
 
| volume    = 121
 
| volume    = 121
| number    = 37
+
| issue      = 37
 
| page_start = 8577
 
| page_start = 8577
 
| page_end  = 8582
 
| page_end  = 8582
Line 220: Line 231:
 
| journal    = J. Biomol. NMR
 
| journal    = J. Biomol. NMR
 
| volume    = 14
 
| volume    = 14
| number    = 4
+
| issue      = 4
 
| page_start = 369
 
| page_start = 369
 
| page_end  = 372
 
| page_end  = 372
Line 232: Line 243:
 
| journal    = J. Biomol. NMR
 
| journal    = J. Biomol. NMR
 
| volume    = 32
 
| volume    = 32
| number    = 1
+
| issue      = 1
 
| page_start = 41
 
| page_start = 41
 
| page_end  = 54
 
| page_end  = 54
Line 255: Line 266:
 
| journal    = J. Am. Chem. Soc.
 
| journal    = J. Am. Chem. Soc.
 
| volume    = 126
 
| volume    = 126
| number    = 12
+
| issue      = 12
 
| page_start = 3964
 
| page_start = 3964
 
| page_end  = 3973
 
| page_end  = 3973
Line 267: Line 278:
 
| journal    = J. Am. Chem. Soc.
 
| journal    = J. Am. Chem. Soc.
 
| volume    = 126
 
| volume    = 126
| number    = 23
+
| issue      = 23
 
| page_start = 7320
 
| page_start = 7320
 
| page_end  = 7329
 
| page_end  = 7329
Line 279: Line 290:
 
| journal    = J. Am. Chem. Soc.
 
| journal    = J. Am. Chem. Soc.
 
| volume    = 127
 
| volume    = 127
| number    = 44
+
| issue      = 44
 
| page_start = 15602
 
| page_start = 15602
 
| page_end  = 15611
 
| page_end  = 15611
Line 291: Line 302:
 
| journal    = J. Am. Chem. Soc.
 
| journal    = J. Am. Chem. Soc.
 
| volume    = 127
 
| volume    = 127
| number    = 2
+
| issue      = 2
 
| page_start = 713
 
| page_start = 713
 
| page_end  = 721
 
| page_end  = 721
Line 303: Line 314:
 
| journal    = J. Am. Chem. Soc.
 
| journal    = J. Am. Chem. Soc.
 
| volume    = 104
 
| volume    = 104
| number    = 17
+
| issue      = 17
 
| page_start = 4546
 
| page_start = 4546
 
| page_end  = 4559
 
| page_end  = 4559
Line 315: Line 326:
 
| journal    = J. Am. Chem. Soc.
 
| journal    = J. Am. Chem. Soc.
 
| volume    = 104
 
| volume    = 104
| number    = 17
+
| issue      = 17
 
| page_start = 4559
 
| page_start = 4559
 
| page_end  = 4570
 
| page_end  = 4570
Line 327: Line 338:
 
| journal    = J. Chem. Phys.
 
| journal    = J. Chem. Phys.
 
| volume    = 39
 
| volume    = 39
| number    = 2
+
| issue      = 2
 
| page_start = 366
 
| page_start = 366
 
| page_end  = 370
 
| page_end  = 370
Line 333: Line 344:
 
| doi        = 10.1063/1.1734254
 
| doi        = 10.1063/1.1734254
 
}}<section end=LuzMeiboom63/>
 
}}<section end=LuzMeiboom63/>
 +
 +
* <section begin=Mandel95/>{{citation
 +
| authors    = Mandel, A. M., Akke, M., and Palmer, 3rd, A. G.
 +
| title      = Backbone dynamics of ''Escherichia coli'' ribonuclease HI: correlations with structure and function in an active enzyme.
 +
| journal    = J. Mol. Biol.
 +
| volume    = 246
 +
| issue      = 1
 +
| page_start = 144
 +
| page_end  = 163
 +
| year      = 1995
 +
| doi        = 10.1006/jmbi.1994.0073
 +
}}<section end=Mandel95/>
  
 
* <section begin=Massi05/>{{citation
 
* <section begin=Massi05/>{{citation
Line 339: Line 362:
 
| journal    = Protein science
 
| journal    = Protein science
 
| volume    = 14
 
| volume    = 14
| number    = 3
+
| issue      = 3
 
| page_start = 735
 
| page_start = 735
 
| page_end  = 742
 
| page_end  = 742
Line 351: Line 374:
 
| journal    = J. Chem. Phys.
 
| journal    = J. Chem. Phys.
 
| volume    = 34
 
| volume    = 34
| number    = 2
+
| issue      = 2
 
| page_start = 375
 
| page_start = 375
 
| page_end  = 388
 
| page_end  = 388
Line 363: Line 386:
 
| journal    = J. Magn. Reson.
 
| journal    = J. Magn. Reson.
 
| volume    = 177
 
| volume    = 177
| number    = 2
+
| issue      = 2
 
| page_start = 221
 
| page_start = 221
 
| page_end  = 227
 
| page_end  = 227
Line 386: Line 409:
 
| journal    = Bioinformatics
 
| journal    = Bioinformatics
 
| volume    = 30
 
| volume    = 30
| number    = 15
+
| issue      = 15
 
| page_start = 2219
 
| page_start = 2219
 
| page_end  = 2220
 
| page_end  = 2220
Line 398: Line 421:
 
| journal    = J. Biomol. NMR
 
| journal    = J. Biomol. NMR
 
| volume    = 45
 
| volume    = 45
| number    = 1
+
| issue      = 1
 
| page_start = 207
 
| page_start = 207
 
| page_end  = 216
 
| page_end  = 216
Line 404: Line 427:
 
| doi        = 10.1007/s10858-009-9344-9
 
| doi        = 10.1007/s10858-009-9344-9
 
}}<section end=MyintIshima09/>
 
}}<section end=MyintIshima09/>
 +
 +
* <section begin=Orekhov95/>{{citation
 +
| authors    = Orekhov, V. Y., Nolde, D. E., Golovanov, A. P., Korzhnev, D. M. and Arseniev, A. S.
 +
| title      = Processing of heteronuclear NMR relaxation data with the new software DASHA
 +
| journal    = Appl. Magn. Reson.
 +
| volume    = 9
 +
| issue      = 4
 +
| page_start = 581
 +
| page_end  = 588
 +
| year      = 1995
 +
| doi        = 10.1007/bf03162365
 +
}}<section end=Orekhov95/>
  
 
* <section begin=Orekhov99/>{{citation
 
* <section begin=Orekhov99/>{{citation
Line 410: Line 445:
 
| journal    = J. Biomol. NMR
 
| journal    = J. Biomol. NMR
 
| volume    = 14
 
| volume    = 14
| number    = 4
+
| issue      = 4
 
| page_start = 345
 
| page_start = 345
 
| page_end  = 356
 
| page_end  = 356
Line 433: Line 468:
 
| journal    = Chem. Rev.
 
| journal    = Chem. Rev.
 
| volume    = 106
 
| volume    = 106
| number    = 5
+
| issue      = 5
 
| page_start = 1700
 
| page_start = 1700
 
| page_end  = 1719
 
| page_end  = 1719
Line 445: Line 480:
 
| journal    = J. Am. Chem. Soc.
 
| journal    = J. Am. Chem. Soc.
 
| volume    = 113
 
| volume    = 113
| number    = 12
+
| issue      = 12
 
| page_start = 4371
 
| page_start = 4371
 
| page_end  = 4380
 
| page_end  = 4380
Line 457: Line 492:
 
| journal    = J. Magn. Reson. B
 
| journal    = J. Magn. Reson. B
 
| volume    = 105
 
| volume    = 105
| number    = 3
+
| issue      = 3
 
| page_start = 211
 
| page_start = 211
 
| page_end  = 224
 
| page_end  = 224
Line 469: Line 504:
 
| journal    = Chem. Eur. J.
 
| journal    = Chem. Eur. J.
 
| volume    = 17
 
| volume    = 17
| number    = 6
+
| issue      = 6
 
| page_start = 1811
 
| page_start = 1811
 
| page_end  = 1817
 
| page_end  = 1817
Line 481: Line 516:
 
| journal    = J. Am. Chem. Soc.
 
| journal    = J. Am. Chem. Soc.
 
| volume    = 123
 
| volume    = 123
| number    = 46
+
| issue      = 46
 
| page_start = 11341
 
| page_start = 11341
 
| page_end  = 11352
 
| page_end  = 11352
Line 493: Line 528:
 
| journal    = Mol. Phys.
 
| journal    = Mol. Phys.
 
| volume    = 101
 
| volume    = 101
| number    = 6
+
| issue      = 6
 
| page_start = 753
 
| page_start = 753
 
| page_end  = 763
 
| page_end  = 763
Line 505: Line 540:
 
| journal    = J. Magn. Reson.
 
| journal    = J. Magn. Reson.
 
| volume    = 154
 
| volume    = 154
| number    = 1
+
| issue      = 1
 
| page_start = 157
 
| page_start = 157
 
| page_end  = 160
 
| page_end  = 160
Line 517: Line 552:
 
| journal    = J. Biomol. NMR
 
| journal    = J. Biomol. NMR
 
| volume    = 8
 
| volume    = 8
| number    = 3
+
| issue      = 3
 
| page_start = 273
 
| page_start = 273
 
| page_end  = 284
 
| page_end  = 284
Line 529: Line 564:
 
| journal    = Proc. Natl. Acad. Sci. USA
 
| journal    = Proc. Natl. Acad. Sci. USA
 
| volume    = 105
 
| volume    = 105
| number    = 33
+
| issue      = 33
 
| page_start = 11766
 
| page_start = 11766
 
| page_end  = 11771
 
| page_end  = 11771
Line 541: Line 576:
 
| journal    = Proc. Natl. Acad. Sci. USA
 
| journal    = Proc. Natl. Acad. Sci. USA
 
| volume    = 104
 
| volume    = 104
| number    = 47
+
| issue      = 47
 
| page_start = 18473
 
| page_start = 18473
 
| page_end  = 18477
 
| page_end  = 18477
Line 547: Line 582:
 
| doi        = 10.1073/pnas.0708296104
 
| doi        = 10.1073/pnas.0708296104
 
}}<section end=Vallurupalli07/>
 
}}<section end=Vallurupalli07/>
 +
 +
[[Category:Documentation]]

Latest revision as of 21:52, 21 October 2020

The following is an alphabetical list of all citations used on the relax wiki:

  • Bain, A. D., Anand, C. A., and Nie, Z. (2011). Exact solution of the CPMG pulse sequence with phase variation down the echo train: Application to R2 measurements J. Magn. Reson., 209(2), 183-194. (DOI: 10.1016/j.jmr.2011.01.009)
  • Baldwin A. J. (2014). An exact solution for R2,eff in CPMG experiments in the case of two site chemical exchange. J. Magn. Reson., 244, 114-124. (DOI: 10.1016/j.jmr.2014.02.023)
  • Bieri, M., d'Auvergne, E., and Gooley, P. (2011). relaxGUI: a new software for fast and simple NMR relaxation data analysis and calculation of ps-ns and μs motion of proteins. J. Biomol. NMR, 50, 147-155. (DOI: 10.1007/s10858-011-9509-1)
  • Bieri, M. and Gooley, P. (2011). Automated NMR relaxation dispersion data analysis using NESSY. BMC Bioinformatics, 12, 1-10. (DOI: 10.1186/1471-2105-12-421)
  • Carver, J. P. and Richards, R. E. (1972). General 2-site solution for chemical exchange produced dependence of T2 upon Carr-Purcell pulse separation. J. Magn. Reson., 6(1), 89-105. (DOI: 10.1016/0022-2364(72)90090-X)
  • Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C., and Gronenborn, A. M. (1990). Deviations from the simple 2-parameter model-free approach to the interpretation of N-15 nuclear magnetic-relaxation of proteins. J. Am. Chem. Soc., 112(12), 4989-4991. (DOI: 10.1021/ja00168a070)
  • d'Auvergne, E. J. (2006). Protein dynamics: a study of the model-free analysis of NMR relaxation data. PhD thesis, Biochemistry and Molecular Biology, University of Melbourne. (Link, PDF)
  • d'Auvergne, E. J. and Gooley, P. R. (2003). The use of model selection in the model-free analysis of protein dynamics. J. Biomol. NMR, 25(1), 25-39. (DOI: 10.1023/a:1021902006114)
  • d'Auvergne, E. J. and Gooley, P. R. (2006). Model-free model elimination: A new step in the model-free dynamic analysis of NMR relaxation data. J. Biomol. NMR, 35(2), 117-135. (DOI: 10.1007/s10858-006-9007-z)
  • d'Auvergne, E. J. and Gooley, P. R. (2007). Set theory formulation of the model-free problem and the diffusion seeded model-free paradigm. Mol. BioSyst., 3(7), 483-494. (DOI: 10.1039/b702202f)
  • d'Auvergne, E. J. and Gooley, P. R. (2008). Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces. J. Biomol. NMR, 40(2), 107-119. (DOI: 10.1007/s10858-007-9214-2)
  • d'Auvergne, E. J. and Gooley, P. R. (2008). Optimisation of NMR dynamic models II. A new methodology for the dual optimisation of the model-free parameters and the Brownian rotational diffusion tensor. J. Biomol. NMR, 40(2), 121-133. (DOI: 10.1007/s10858-007-9213-3)
  • Davis, D. G., Perlman, M. E., and London, R. E. (1994). Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the T1rho and T2 (CPMG) methods. J. Magn. Reson., 104(3), 266-275. (DOI: 10.1006/jmrb.1994.1084)
  • Erdélyi, M., d'Auvergne, E., Navarro-Vázquez, A., Leonov, A., and Griesinger, C. (2011). Dynamics of the glycosidic bond: conformational space of lactose. Chem. Eur. J., 17(34), 9368-9376. (DOI: 10.1002/chem.201100854)
  • Evenäs, J., Malmendal, A. and Akke, M. (2001). Dynamics of the transition between open and closed conformations in a calmodulin C-terminal domain mutant. Structure, 9(3), 185-195. (DOI: 10.1016/S0969-2126(01)00575-5)
  • Farrow, N. A., Muhandiram, R., Singer, A. U., Pascal, S. M., Kay, C. M., Gish, G., Shoelson, S. E., Pawson, T., Forman-Kay, J. D., Kay, L. E. (1994). Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry, 33(19), 5984-6003. (DOI: 10.1021/bi00185a040)
  • Fushman, D., Tjandra, N., and Cowburn, D. (1998). Direct measurement of 15N chemical shift anisotropy in solution. J. Am. Chem. Soc., 120(42), 10947-10952. (DOI: 10.1021/ja981686m)
  • Fushman, D., Tjandra, N., and Cowburn, D. (1999). An approach to direct determination of protein dynamics from 15N NMR relaxation at multiple fields, independent of variable 15N chemical shift anisotropy and chemical exchange contributions. J. Am. Chem. Soc., 121(37), 8577-8582. (DOI: 10.1021/ja9904991)
  • Ishima, R. and Torchia, D. A. (1999). Estimating the time scale of chemical exchange of proteins from measurements of transverse relaxation rates in solution. J. Biomol. NMR, 14(4), 369-372. (DOI: 10.1023/A:1008324025406)
  • Ishima, R. and Torchia, D. A. (2005). Error estimation and global fitting in transverse-relaxation dispersion experiments to determine chemical-exchange parameters. J. Biomol. NMR, 32(1), 41-54. (DOI: 10.1007/s10858-005-3593-z)
  • Kempf, J. G. and Loria, J. P. (2004). Measurement of intermediate exchange phenomena. Methods Mol. Biol., 278, 185-231. (DOI: 10.1385/1-59259-809-9:185)
  • Korzhnev, D. M., Kloiber, K., Kanelis, V., Tugarinov, V., and Kay, L. E. (2004). Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme. J. Am. Chem. Soc., 126(12), 3964-3973. (DOI: 10.1021/ja039587i)
  • Korzhnev, D. M., Kloiber, K., and Kay, L. E. (2004). Multiple-quantum relaxation dispersion NMR spectroscopy probing millisecond time-scale dynamics in proteins: theory and application. J. Am. Chem. Soc., 126(23), 7320-7329. (DOI: 10.1021/ja049968b)
  • Korzhnev, D. M., Neudecker, P., Mittermaier, A., Orekhov, V. Y., and Kay, L. E. (2005). Multiple-site exchange in proteins studied with a suite of six NMR relaxation dispersion experiments: an application to the folding of a Fyn SH3 domain mutant. J. Am. Chem. Soc., 127(44), 15602-15611. (DOI: 10.1021/ja054550e)
  • Korzhnev, D. M., Orekhov, V. Y., and Kay, L. E. (2005). Off-resonance R(1rho) NMR studies of exchange dynamics in proteins with low spin-lock fields: an application to a Fyn SH3 domain. J. Am. Chem. Soc., 127(2), 713-721. (DOI: 10.1021/ja0446855)
  • Lipari, G. and Szabo, A. (1982). Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules I. Theory and range of validity. J. Am. Chem. Soc., 104(17), 4546-4559. (DOI: 10.1021/ja00381a009)
  • Lipari, G. and Szabo, A. (1982). Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules II. Analysis of experimental results. J. Am. Chem. Soc., 104(17), 4559-4570. (DOI: 10.1021/ja00381a010)
  • Luz, Z. and Meiboom, S. (1963). Nuclear magnetic resonance study of protolysis of trimethylammonium ion in aqueous solution - order of reaction with respect to solvent. J. Chem. Phys., 39(2), 366-370. (DOI: 10.1063/1.1734254)
  • Mandel, A. M., Akke, M., and Palmer, 3rd, A. G. (1995). Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol., 246(1), 144-163. (DOI: 10.1006/jmbi.1994.0073)
  • Massi, F., Grey, M. J., Palmer, 3rd, A. G. (2005). Microsecond timescale backbone conformational dynamics in ubiquitin studied with NMR R1ρ relaxation experiments Protein science, 14(3), 735-742. (DOI: 10.1110/ps.041139505)
  • Meiboom, S. (1961). Nuclear magnetic resonance study of proton transfer in water. J. Chem. Phys., 34(2), 375-388. (DOI: 10.1063/1.1700960)
  • Miloushev, V. Z. and Palmer, 3rd, A. G. (2005). R(1rho) relaxation for two-site chemical exchange: general approximations and some exact solutions. J. Magn. Reson., 177(2), 221-227. (DOI: 10.1016/j.jmr.2005.07.023)
  • Morin, S. and Gagné, S. (2009). Simple tests for the validation of multiple field spin relaxation data. J. Biomol. NMR, 45, 361-372. (DOI: 10.1007/s10858-009-9381-4)
  • Morin, S., Linnet, T. E., Lescanne, M., Schanda, P., Thompson, G. S., Tollinger, M., Teilum, K., Gagné, S., Marion, D., Griesinger, C., Blackledge, M., and d'Auvergne, E. J. (2014). relax: the analysis of biomolecular kinetics and thermodynamics using NMR relaxation dispersion data. Bioinformatics, 30(15), 2219-2220. (DOI: 10.1093/bioinformatics/btu166)
  • Myint, W. and Ishima, R. (2009). Chemical exchange effects during refocusing pulses in constant-time CPMG relaxation dispersion experiments J. Biomol. NMR, 45(1), 207-216. (DOI: 10.1007/s10858-009-9344-9)
  • Orekhov, V. Y., Nolde, D. E., Golovanov, A. P., Korzhnev, D. M. and Arseniev, A. S. (1995). Processing of heteronuclear NMR relaxation data with the new software DASHA Appl. Magn. Reson., 9(4), 581-588. (DOI: 10.1007/bf03162365)
  • Orekhov, V. Y., Korzhnev, D. M., Diercks, T., Kessler, H., and Arseniev, A. S. (1999). H-1-N-15 NMR dynamic study of an isolated alpha-helical peptide (1-36)bacteriorhodopsin reveals the equilibrium helix-coil transitions. J. Biomol. NMR, 14(4), 345-356. (DOI: 10.1023/a:1008356809071)
  • Palmer, 3rd, A. G., Kroenke, C. D., and Loria, J. P. (2001). Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol., 339, 204-238. (DOI: 10.1016/S0076-6879(01)39315-1)
  • Palmer, 3rd, A. G. and Massi, F. (2006). Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem. Rev., 106(5), 1700-1719. (DOI: 10.1021/cr0404287)
  • Palmer, 3rd, A. G., Rance, M., and Wright, P. E. (1991). Intramolecular motions of a zinc finger DNA-binding domain from Xfin characterized by proton-detected natural abundance carbon-13 heteronuclear NMR spectroscopy. J. Am. Chem. Soc., 113(12), 4371-4380. (DOI: 10.1021/ja00012a001)
  • Schurr, J. M., Babcock, H. P., and Fujimoto, B. S. (1994). A test of the model-free formulas. Effects of anisotropic rotational diffusion and dimerization. J. Magn. Reson. B, 105(3), 211-224. (DOI: 10.1006/jmrb.1994.1127)
  • Sun, H., d'Auvergne, E. J., Reinscheid, U. M., Dias, L. C., Andrade, C. K. Z., Rocha, R. O., and Griesinger, C. (2011). Bijvoet in solution reveals unexpected stereoselectivity in a michael addition. Chem. Eur. J., 17(6), 1811-1817. (DOI: 10.1002/chem.201002520)
  • Tollinger, M., Skrynnikov, N. R., Mulder, F. A. A., Forman-Kay, J. D., and Kay, L. E. (2001). Slow dynamics in folded and unfolded states of an sh3 domain. J. Am. Chem. Soc., 123(46), 11341-11352. (DOI: 10.1021/ja011300z)
  • Trott, O., Abergel, D., and Palmer, A. (2003). An average-magnetization analysis of R-1 rho relaxation outside of the fast exchange. Mol. Phys., 101(6), 753-763. (DOI: 10.1080/0026897021000054826)
  • Trott, O. and Palmer, 3rd, A. G. (2002). R1rho relaxation outside of the fast-exchange limit. J. Magn. Reson., 154(1), 157-160. (DOI: 10.1006/jmre.2001.2466)
  • Tjandra, N., Wingfield, P., Stahl, S., and Bax, A. (1996). Anisotropic rotational diffusion of perdeuterated HIV protease from N-15 NMR relaxation measurements at two magnetic. J. Biomol. NMR, 8(3), 273-284. (DOI: 10.1007/bf00410326)
  • Vallurupalli, P., Hansen, D. F., and Kay, L. E. (2008). Structures of invisible, excited protein states by relaxation dispersion NMR spectroscopy Proc. Natl. Acad. Sci. USA, 105(33), 11766-11771. (DOI: 10.1073/pnas.0804221105)
  • Vallurupalli, P., Hansen, D. F., Stollar, E., Meirovitch, E. and Kay, L. E. (2007). Measurement of bond vector orientations in invisible excited states of proteins Proc. Natl. Acad. Sci. USA, 104(47), 18473-18477. (DOI: 10.1073/pnas.0708296104)