Difference between revisions of "DPL94 math"
Line 37: | Line 37: | ||
plt.figure(1) | plt.figure(1) | ||
plt.plot(data[:,2], data[:,3], '.') | plt.plot(data[:,2], data[:,3], '.') | ||
+ | plt.ylabel(r'Imaginary Rex, ramping spin-lock field strength, nu1') | ||
+ | plt.xlabel(r'Rotating frame tilt angle') | ||
Omega = np.arange(0., 20, 1) | Omega = np.arange(0., 20, 1) | ||
Line 44: | Line 46: | ||
plt.figure(2) | plt.figure(2) | ||
plt.plot(data[:,2], data[:,3], '.') | plt.plot(data[:,2], data[:,3], '.') | ||
+ | plt.ylabel(r'Imaginary Rex, ramping spin-lock offset') | ||
+ | plt.xlabel(r'Rotating frame tilt angle') | ||
plt.show() | plt.show() | ||
</source> | </source> | ||
+ | |||
== Figure == | == Figure == | ||
See Figure 1 and 10 in the reference. | See Figure 1 and 10 in the reference. |
Revision as of 09:47, 21 March 2014
Equation
[math] \mathrm{R}_{1\rho}= \mathrm{R}_1\cos^2\theta + \left( \mathrm{R}_{1\rho}{´} + \frac{\Phi_\textrm{ex} \textrm{k}_\textrm{ex}}{\textrm{k}_\textrm{ex}^2 + \omega_\textrm{e}^2} \right) \sin^2\theta [/math]
Expressing in terms of $\textrm{w}_\textrm{1}, \textrm{w}_\textrm{eff}$
[math]
\sin^2\theta \left( \frac{\Phi_\textrm{ex} \textrm{k}_\textrm{ex}}{\textrm{k}_\textrm{ex}^2 + \omega_\textrm{e}^2} \right) =
\frac{w_\textrm{1}^2}{w_\textrm{eff}^2} \cdot \left( \frac{\Phi_\textrm{ex} \textrm{k}_\textrm{ex}}{\textrm{k}_\textrm{ex}^2 + w_\textrm{1}^2 + \Omega^2} \right) =
\frac{w_\textrm{1}^2}{w_\textrm{1}^2 + \Omega^2} \cdot \left( \frac{\Phi_\textrm{ex} \textrm{k}_\textrm{ex}}{\textrm{k}_\textrm{ex}^2 + w_\textrm{1}^2 + \Omega^2} \right)
[/math]
Ramp code
import matplotlib.pyplot as plt
import numpy as np
from math import atan2
phi = 2.0
kex = 3.0
def calc(w1_arr, Omega_arr, p, k):
val_arr = []
for w1 in w1_arr:
for Omega in Omega_arr:
theta = atan2(w1 , Omega)
val = w1**2/(w1**2+Omega**2) * (p*k/(k**2 + w1**2 + Omega**2))
#val = (p*k/(k**2 + w1**2 + Omega**2))
val_arr.append([w1, Omega, theta, val])
return np.array(val_arr)
w1 = np.arange(0., 20, 1)
Omega = np.array([5])
data = calc(w1, Omega, phi, kex)
plt.figure(1)
plt.plot(data[:,2], data[:,3], '.')
plt.ylabel(r'Imaginary Rex, ramping spin-lock field strength, nu1')
plt.xlabel(r'Rotating frame tilt angle')
Omega = np.arange(0., 20, 1)
w1 = np.array([5])
data = calc(w1, Omega, phi, kex)
plt.figure(2)
plt.plot(data[:,2], data[:,3], '.')
plt.ylabel(r'Imaginary Rex, ramping spin-lock offset')
plt.xlabel(r'Rotating frame tilt angle')
plt.show()
Figure
See Figure 1 and 10 in the reference.
Palmer, A.G. & Massi, F. (2006). Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem. Rev. 106, 1700-1719 DOI
Figure produced with script found here.