Difference between revisions of "CR72 full"

From relax wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
\zeta = 2 \Delta \omega \, (R_2^A - R_2^B - p_A k_{\textrm{EX}} + p_B k_{\textrm{EX}}) \\
 
\zeta = 2 \Delta \omega \, (R_2^A - R_2^B - p_A k_{\textrm{EX}} + p_B k_{\textrm{EX}}) \\
 
\Psi = (R_2^A - R_2^B - p_A k_{\textrm{EX}} + p_B k_{\textrm{EX}})^2 - \Delta \omega^2 + 4 p_A p_B k_{\textrm{ex}}^2 \\
 
\Psi = (R_2^A - R_2^B - p_A k_{\textrm{EX}} + p_B k_{\textrm{EX}})^2 - \Delta \omega^2 + 4 p_A p_B k_{\textrm{ex}}^2 \\
\eta_+ = \frac{1}{\sqrt{2^3}\nu_{\textrm{cpmg}}}\sqrt{+\Psi + \sqrt{\Psi^2 + \zeta^2}} \\
+
\eta_+ = 2^{2/3}\frac{1}{\nu_{\textrm{cpmg}}}\sqrt{+\Psi + \sqrt{\Psi^2 + \zeta^2}} \\
 
\eta_- = \frac{}{\sqrt{2^3}\nu_{\textrm{cpmg}}}\sqrt{-\Psi + \sqrt{\Psi^2 + \zeta^2}} \\
 
\eta_- = \frac{}{\sqrt{2^3}\nu_{\textrm{cpmg}}}\sqrt{-\Psi + \sqrt{\Psi^2 + \zeta^2}} \\
 
D_+=\frac{1}{2}\left(1+\frac{\Psi+2\Delta \omega^2}{\sqrt{\Psi^2+\zeta^2}} \right) \\
 
D_+=\frac{1}{2}\left(1+\frac{\Psi+2\Delta \omega^2}{\sqrt{\Psi^2+\zeta^2}} \right) \\

Revision as of 09:29, 3 May 2014

The full Carver and Richards 1972 2-site relaxation dispersion model for SQ CPMG-type data for most time scales. This model is labelled as CR72 full in relax.

Equation

Please see the summary of the model parameters here.

[math] R_{2,\textrm{eff}} = \frac{R_2^A+R_2^B+k_{\textrm{EX}}}{2} - \nu_{\textrm{cpmg}} \cosh^{-1} (D_+\cosh(\eta_+) - D_-\cos(\eta_-)) [/math]

Which have the following definitions

[math] \zeta = 2 \Delta \omega \, (R_2^A - R_2^B - p_A k_{\textrm{EX}} + p_B k_{\textrm{EX}}) \\ \Psi = (R_2^A - R_2^B - p_A k_{\textrm{EX}} + p_B k_{\textrm{EX}})^2 - \Delta \omega^2 + 4 p_A p_B k_{\textrm{ex}}^2 \\ \eta_+ = 2^{2/3}\frac{1}{\nu_{\textrm{cpmg}}}\sqrt{+\Psi + \sqrt{\Psi^2 + \zeta^2}} \\ \eta_- = \frac{}{\sqrt{2^3}\nu_{\textrm{cpmg}}}\sqrt{-\Psi + \sqrt{\Psi^2 + \zeta^2}} \\ D_+=\frac{1}{2}\left(1+\frac{\Psi+2\Delta \omega^2}{\sqrt{\Psi^2+\zeta^2}} \right) \\ D_-=\frac{1}{2}\left(-1+\frac{\Psi+2\Delta \omega^2}{\sqrt{\Psi^2+\zeta^2}} \right) [/math]

[math]k_{\textrm{EX}}[/math] is the chemical exchange rate constant, [math]p_A[/math] and [math]p_B[/math] are the populations of states A and B, and [math]\Delta \omega[/math] is the chemical shift difference between the two states in ppm.

Parameters

The CR72 full model has the parameters {$R_{2A}^0$, $R_{2B}^0$, $...$, $p_A$, $\Delta\omega$, $k_{ex}$}.

Reference

The reference for the CR72 full model is:

  • Carver, J. and Richards, R. (1972). General 2-site solution for chemical exchange produced dependence of T2 upon Carr-Purcell pulse separation. J. Magn. Reson., 6(1), 89-105. (10.1016/0022-2364(72)90090-X).

Related models

The CR72 model is a parametric restriction of this model.

Links

The implementation of the CR72 full model in relax can be seen in the:

See also