Difference between revisions of "CR72"

From relax wiki
Jump to navigation Jump to search
Line 30: Line 30:
  
 
<math>k_{\textrm{EX}}</math> is the chemical exchange rate constant, <math>p_A</math> and <math>p_B</math> are the populations of states A and B, and <math>\Delta \omega</math> is the chemical shift difference between the two states in ppm.
 
<math>k_{\textrm{EX}}</math> is the chemical exchange rate constant, <math>p_A</math> and <math>p_B</math> are the populations of states A and B, and <math>\Delta \omega</math> is the chemical shift difference between the two states in ppm.
 +
 +
== Parameters ==
 +
 +
The CR72 model has the parameters {$R_2^0$, $...$, $p_A$, $\Delta\omega$, $k_{ex}$}.
  
 
== Code ==
 
== Code ==
  
 +
The library code.<br>
 
http://svn.gna.org/viewcvs/*checkout*/relax/trunk/lib/dispersion/cr72.py?revision=HEAD
 
http://svn.gna.org/viewcvs/*checkout*/relax/trunk/lib/dispersion/cr72.py?revision=HEAD
 
== Parameters ==
 
 
The CR72 model has the parameters {$R_2^0$, $...$, $p_A$, $\Delta\omega$, $k_{ex}$}.
 
  
 
== Reference ==
 
== Reference ==

Revision as of 19:57, 3 May 2014

Intro

The Carver and Richards 1972 2-site relaxation dispersion model for SQ CPMG-type data for most time scales whereby the simplification $R_{2A}^0$ = $R_{2B}^0$ is assumed. This model is labelled as CR72 in relax.

Equation

Please see the summary of the model parameters here.

[math] R_{2,\textrm{eff}} = \frac{R_2^A+R_2^B+k_{\textrm{EX}}}{2} - \nu_{\textrm{cpmg}} \cosh^{-1} (D_+\cosh(\eta_+) - D_-\cos(\eta_-)) = R_2 + \frac{k_{\textrm{EX}}}{2} - \nu_{\textrm{cpmg}} \cosh^{-1} (D_+\cosh(\eta_+) - D_-\cos(\eta_-)) [/math]

Which have the following definitions

[math] \zeta = 2 \Delta \omega \, (R_2^A - R_2^B - p_A k_{\textrm{EX}} + p_B k_{\textrm{EX}}) = - 2 \Delta \omega \, ( p_A k_{\textrm{EX}} - p_B k_{\textrm{EX}}) = - 2 \Delta \omega \, ( k_{\textrm{BA}} - k_{\textrm{AB}}) \\ \Psi = (- p_A k_{\textrm{EX}} + p_B k_{\textrm{EX}})^2 - \Delta \omega^2 + 4 p_A p_B k_{\textrm{ex}}^2 = ( p_A k_{\textrm{EX}} + p_B k_{\textrm{EX}} )^2 - \Delta \omega^2 = ( k_{\textrm{BA}} + k_{\textrm{AB}} )^2 - \Delta \omega^2 \\ \eta_+ = \frac{1}{2\sqrt{2} \, \nu_{\textrm{cpmg}}}\sqrt{+\Psi + \sqrt{\Psi^2 + \zeta^2}} \\ \eta_- = \frac{1}{2\sqrt{2} \, \nu_{\textrm{cpmg}}}\sqrt{-\Psi + \sqrt{\Psi^2 + \zeta^2}} \\ D_+=\frac{1}{2}\left(1+\frac{\Psi+2\Delta \omega^2}{\sqrt{\Psi^2+\zeta^2}} \right) \\ D_-=\frac{1}{2}\left(-1+\frac{\Psi+2\Delta \omega^2}{\sqrt{\Psi^2+\zeta^2}} \right) [/math]

[math]k_{\textrm{EX}}[/math] is the chemical exchange rate constant, [math]p_A[/math] and [math]p_B[/math] are the populations of states A and B, and [math]\Delta \omega[/math] is the chemical shift difference between the two states in ppm.

Parameters

The CR72 model has the parameters {$R_2^0$, $...$, $p_A$, $\Delta\omega$, $k_{ex}$}.

Code

The library code.
http://svn.gna.org/viewcvs/*checkout*/relax/trunk/lib/dispersion/cr72.py?revision=HEAD

Reference

The reference for the CR72 model is:

  • Carver, J. and Richards, R. (1972). General 2-site solution for chemical exchange produced dependence of T2 upon Carr-Purcell pulse separation. J. Magn. Reson., 6(1), 89-105. (10.1016/0022-2364(72)90090-X).

Related models

The CR72 model is a parametric restriction of the CR72 full model.

Links

The implementation of the CR72 model in relax can be seen in the:

See also