Difference between revisions of "Numpy linalg"

From relax wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
== Einsum ==
 
== Einsum ==
 
http://chintaksheth.wordpress.com/2013/07/31/numpy-the-tricks-of-the-trade-part-ii/
 
http://chintaksheth.wordpress.com/2013/07/31/numpy-the-tricks-of-the-trade-part-ii/
 +
 +
http://stackoverflow.com/questions/14758283/is-there-a-numpy-scipy-dot-product-calculating-only-the-diagonal-entries-of-the
 +
 +
<source lang="python">
 +
a = np.arange(4).reshape(2,2)
 +
print a
 +
print "np.einsum('ii', a), row i multiplied downwards"
 +
print np.einsum('ii', a)
 +
 +
print "np.einsum('ij', a), same matrix ?"
 +
print np.einsum('ij', a)
 +
 +
print "np.einsum('ji', a), transpose"
 +
print np.einsum('ji', a)
 +
 +
print "np.einsum('ji', a), dot product"
 +
print np.einsum('ij,jk', a, a)
 +
print np.dot(a, a)
 +
</source>

Revision as of 11:52, 19 June 2014

How to transpose higher dimension arrays

http://jameshensman.wordpress.com/2010/06/14/multiple-matrix-multiplication-in-numpy/

Faster dot product using BLAS

http://www.huyng.com/posts/faster-numpy-dot-product/

http://stackoverflow.com/questions/5990577/speeding-up-numpy-dot

http://wiki.scipy.org/PerformanceTips

http://thread.gmane.org/gmane.comp.python.numeric.general/28135/

Multi dot

http://wiki.scipy.org/Cookbook/MultiDot

Einsum

http://chintaksheth.wordpress.com/2013/07/31/numpy-the-tricks-of-the-trade-part-ii/

http://stackoverflow.com/questions/14758283/is-there-a-numpy-scipy-dot-product-calculating-only-the-diagonal-entries-of-the

a = np.arange(4).reshape(2,2)
print a
print "np.einsum('ii', a), row i multiplied downwards"
print np.einsum('ii', a)

print "np.einsum('ij', a), same matrix ?"
print np.einsum('ij', a)

print "np.einsum('ji', a), transpose"
print np.einsum('ji', a)

print "np.einsum('ji', a), dot product"
print np.einsum('ij,jk', a, a)
print np.dot(a, a)