Difference between revisions of "Pooled standard deviation"

From relax wiki
Jump to navigation Jump to search
(Fix for the symbols and maths - all $x$ usage has been replaced by <math> tags or direct HTML conversion.)
 
Line 25: Line 25:
 
s_{r,p}=\sqrt{\frac{\sum(n_i-1)s_{r,i}^2}{\sum n_i -1}} = \sqrt{\frac{\sum(n_i-1)s_i^2x_i^{-2}}{\sum n_i -1}}
 
s_{r,p}=\sqrt{\frac{\sum(n_i-1)s_{r,i}^2}{\sum n_i -1}} = \sqrt{\frac{\sum(n_i-1)s_i^2x_i^{-2}}{\sum n_i -1}}
 
</math>
 
</math>
 +
 +
[[Category:Analysis techniques]]

Latest revision as of 21:37, 21 October 2020

IUPAC - pooled standard deviation

IUPAC :pooled standard deviation

A problem often arises when the combination of several series of measurements performed under similar conditions is desired to achieve an improved estimate of the imprecision of the process. If it can be assumed that all the series are of the same precision although their means may differ, the pooled standard deviations sp from k series of measurements can be calculated as

[math] s_p=\sqrt{\frac{(n_1-1)s_1^2+(n_2-1)s_2^2+...+(n_k-1)s_k^2}{n_1+n_2+...+n_k-k}} [/math]


The suffices 1, 2, ..., k refer to the different series of measurements. In this case it is assumed that there exists a single underlying standard deviation σ of which the pooled standard deviation sp is a better estimate than the individual calculated standard deviations s1, s2, ..., sk, For the special case where k sets of duplicate measurements are available, the above equation reduces to

[math] s_p=\sqrt{\frac{\sum(x_{i1}-x_{i2})^2}{2k}} [/math]

Results from various series of measurements can be combined in the following way to give a pooled relative standard deviation sr,p:

[math] s_{r,p}=\sqrt{\frac{\sum(n_i-1)s_{r,i}^2}{\sum n_i -1}} = \sqrt{\frac{\sum(n_i-1)s_i^2x_i^{-2}}{\sum n_i -1}} [/math]