Difference between revisions of "DPL94 derivatives"
Jump to navigation
Jump to search
(Created page with "== Jacobian == <source lang="python"> from sympy import * # In contrast to other Computer Algebra Systems, in SymPy you have to declare symbolic variables explicitly: R1 = S...") |
|||
Line 1: | Line 1: | ||
== Jacobian == | == Jacobian == | ||
+ | === sympy === | ||
<source lang="python"> | <source lang="python"> | ||
from sympy import * | from sympy import * | ||
Line 26: | Line 27: | ||
print("""Form the Jacobian matrix by: | print("""Form the Jacobian matrix by: | ||
------------------------------------------------------------------------------ | ------------------------------------------------------------------------------ | ||
− | from numpy import array, transpose | + | from numpy import array, cos, sin, pi, transpose |
− | + | ||
+ | R1 = 1.1 | ||
+ | theta = pi / 4 | ||
+ | R1rho_p = 10. | ||
+ | phi_ex = 1100. | ||
+ | kex = 2200. | ||
+ | we = 3300. | ||
+ | |||
d_f_d_R1 = %s | d_f_d_R1 = %s | ||
d_f_d_theta = %s | d_f_d_theta = %s | ||
Line 35: | Line 43: | ||
d_f_d_we = %s | d_f_d_we = %s | ||
jacobian_matrix = transpose(array( [d_f_d_R1 , d_f_d_theta, d_f_d_R1rho_p, d_f_d_phi_ex, d_f_d_kex, d_f_d_we] ) ) | jacobian_matrix = transpose(array( [d_f_d_R1 , d_f_d_theta, d_f_d_R1rho_p, d_f_d_phi_ex, d_f_d_kex, d_f_d_we] ) ) | ||
+ | |||
+ | print jacobian_matrix | ||
------------------------------------------------------------------------------ | ------------------------------------------------------------------------------ | ||
""" % (d_f_d_R1, d_f_d_theta, d_f_d_R1rho_p, d_f_d_phi_ex, d_f_d_kex, d_f_d_we) ) | """ % (d_f_d_R1, d_f_d_theta, d_f_d_R1rho_p, d_f_d_phi_ex, d_f_d_kex, d_f_d_we) ) | ||
</source> | </source> | ||
− | + | === output === | |
output | output | ||
<source lang="python"> | <source lang="python"> | ||
− | from numpy import array, transpose | + | from numpy import array, cos, sin, pi, transpose |
− | + | ||
+ | R1 = 1.1 | ||
+ | theta = pi / 4 | ||
+ | R1rho_p = 10. | ||
+ | phi_ex = 1100. | ||
+ | kex = 2200. | ||
+ | we = 3300. | ||
+ | |||
d_f_d_R1 = cos(theta)**2 | d_f_d_R1 = cos(theta)**2 | ||
d_f_d_theta = -2*R1*sin(theta)*cos(theta) + 2*(R1rho_p + kex*phi_ex/(kex**2 + we**2))*sin(theta)*cos(theta) | d_f_d_theta = -2*R1*sin(theta)*cos(theta) + 2*(R1rho_p + kex*phi_ex/(kex**2 + we**2))*sin(theta)*cos(theta) | ||
Line 50: | Line 67: | ||
d_f_d_we = -2*kex*phi_ex*we*sin(theta)**2/(kex**2 + we**2)**2 | d_f_d_we = -2*kex*phi_ex*we*sin(theta)**2/(kex**2 + we**2)**2 | ||
jacobian_matrix = transpose(array( [d_f_d_R1 , d_f_d_theta, d_f_d_R1rho_p, d_f_d_phi_ex, d_f_d_kex, d_f_d_we] ) ) | jacobian_matrix = transpose(array( [d_f_d_R1 , d_f_d_theta, d_f_d_R1rho_p, d_f_d_phi_ex, d_f_d_kex, d_f_d_we] ) ) | ||
+ | |||
+ | print jacobian_matrix | ||
</source> | </source> |
Revision as of 09:06, 1 September 2014
Jacobian
sympy
from sympy import *
# In contrast to other Computer Algebra Systems, in SymPy you have to declare symbolic variables explicitly:
R1 = Symbol('R1')
theta = Symbol('theta')
R1rho_p = Symbol('R1rho_p')
phi_ex = Symbol('phi_ex')
kex = Symbol('kex')
we = Symbol('we')
# Define function
f = R1 * cos(theta)**2 + (R1rho_p + ( (phi_ex * kex) / (kex**2 + we**2) ) ) * sin(theta)**2
print("Now calculate the Jacobian. The partial derivative matrix.\n")
print("Jacobian is m rows with function derivatives and n columns of parameters.")
d_f_d_R1 = diff(f, R1)
d_f_d_theta = diff(f, theta)
d_f_d_R1rho_p = diff(f, R1rho_p)
d_f_d_phi_ex = diff(f, phi_ex)
d_f_d_kex = diff(f, kex)
d_f_d_we = diff(f, we)
print("""Form the Jacobian matrix by:
------------------------------------------------------------------------------
from numpy import array, cos, sin, pi, transpose
R1 = 1.1
theta = pi / 4
R1rho_p = 10.
phi_ex = 1100.
kex = 2200.
we = 3300.
d_f_d_R1 = %s
d_f_d_theta = %s
d_f_d_R1rho_p = %s
d_f_d_phi_ex = %s
d_f_d_kex = %s
d_f_d_we = %s
jacobian_matrix = transpose(array( [d_f_d_R1 , d_f_d_theta, d_f_d_R1rho_p, d_f_d_phi_ex, d_f_d_kex, d_f_d_we] ) )
print jacobian_matrix
------------------------------------------------------------------------------
""" % (d_f_d_R1, d_f_d_theta, d_f_d_R1rho_p, d_f_d_phi_ex, d_f_d_kex, d_f_d_we) )
output
output
from numpy import array, cos, sin, pi, transpose
R1 = 1.1
theta = pi / 4
R1rho_p = 10.
phi_ex = 1100.
kex = 2200.
we = 3300.
d_f_d_R1 = cos(theta)**2
d_f_d_theta = -2*R1*sin(theta)*cos(theta) + 2*(R1rho_p + kex*phi_ex/(kex**2 + we**2))*sin(theta)*cos(theta)
d_f_d_R1rho_p = sin(theta)**2
d_f_d_phi_ex = kex*sin(theta)**2/(kex**2 + we**2)
d_f_d_kex = (-2*kex**2*phi_ex/(kex**2 + we**2)**2 + phi_ex/(kex**2 + we**2))*sin(theta)**2
d_f_d_we = -2*kex*phi_ex*we*sin(theta)**2/(kex**2 + we**2)**2
jacobian_matrix = transpose(array( [d_f_d_R1 , d_f_d_theta, d_f_d_R1rho_p, d_f_d_phi_ex, d_f_d_kex, d_f_d_we] ) )
print jacobian_matrix