Tutorial for Relaxation dispersion analysis r1rho fixed time recorded on varian as sequential spectra
Intro
This tutorial presently cover the relax_disp branch.
This branch is under development, for testing it out, you need to use the source code. See Installation_linux#Checking_out_a_relax_branch.
This tutorial is based on the analysis of R1rho data, analysed in a master thesis.
The spectra is not recorded interleaved, but as a series of spectra with experimental changes.
Preparation
You want to make a working dir, with different folders
peak_lists
spectrometer_data
scripts
You can create the folders by
mkdir peak_lists spectrometer_data scripts
In the folder peak_lists should contain SPARKY list in SPARKY list format.
In the folder scripts we put scripts which help us processing the files.
In the folder spectrometer_data should be a directory containing directories with all experiments where each directory contain files: fid and procpar as the output from recording on Varian.
Establish file-overview
Make file with paths to fid files
We make a file list of filepaths to fid files.
ls -v -d -1 */fid > fid_files.ls
cat fid_files.ls
Do something in each directory
With the fid_files.ls, we can do something in each directory.
For example do a list files in each direcory.
set FIDS=`cat fid_files.ls`
foreach I (`seq 1 ${#FIDS}`)
set FID=${FIDS[$I]}; set DIRN=`dirname $FID`
cd $DIRN
ls
cd ..
end
Extract the spectra settings from Varian procpar file
Now we want to make a settings file we can read in relax.
set FIDS=`cat fid_files.ls`
set OUT=$PWD/exp_parameters.txt
echo "# DIRN I deltadof2 dpwr2slock ncyc trim ss sfrq" > $OUT
foreach I (`seq 1 ${#FIDS}`)
set FID=${FIDS[$I]}; set DIRN=`dirname $FID`
cd $DIRN
set deltadof2=`awk '/^deltadof2 /{f=1;next}f{print $2;exit}' procpar`
set dpwr2slock=`awk '/^dpwr2slock /{f=1;next}f{print $2;exit}' procpar`
set ncyc=`awk '/^ncyc /{f=1;next}f{print $2;exit}' procpar`
set trim=`awk '/^trim /{f=1;next}f{print $2;exit}' procpar`
set ss=`awk '/^ss /{f=1;next}f{print $2;exit}' procpar`
set sfrq=`awk '/^sfrq /{f=1;next}f{print $2;exit}' procpar`
set apodrmsd=`showApod test.ft2 | grep "REMARK Automated Noise Std Dev in Processed Data:" | awk '{print $9}'`
echo "$DIRN $I $deltadof2 $dpwr2slock $ncyc $trim $ss $sfrq $apodrmsd" >> $OUT
cd ..
end
cat $OUT
You can check, if you have repetitions of experiments, by sorting the parameters, and see if they are dublicated.
We do this, by numerical sort columns 3,4 and 5 with the values for "deltadof2, dpwr2slock, ncyc".
sort -b -k 3,3n -k 4,4n -k 5,5n exp_parameters.txt | awk '{print $3, $4, $5}'
sort -b -k 3,3n -k 4,4n -k 5,5n exp_parameters.txt > exp_parameters_sort.txt
Spectral process files
Copy data
We first copy the data
# Copy data
cp -r spectrometer_data spectrometer_data_processed
cd spectrometer_data_processed
Change format to NMRPipe
set CWD=$PWD
set DIRS=`cat fid_files.ls | sed 's/\/fid//g'`
cd ${DIRS[1]}
varian
Now we make a file to convert from binary format of Varian to NMRPipe.
- Now click, 'read parameters', check 'Rance-Kay'
- Remember to set Y-'Observe Freq MHz' to N15
- Remove sleep 5 from the script.
- Click 'Save script' to make fid.com file, and 'Quit', and run the script.
Spectral processing
This step can be done by following wiki page Spectral_processing.
Start nmrDraw by command
nmrDraw
Convert and spectral processing all
Now we want to convert all spectra.
You should have a fid.com and nmrproc.com in the first FID folder.
We now copy these script into all of the experimental folders, and execute them.
cd $CWD
set FIDS=`cat fid_files.ls`
set DIRN1=`dirname $PWD/${FIDS[1]}`
foreach I (`seq 2 ${#FIDS}`)
set FID=${FIDS[$I]}; set DIRN=`dirname $FID`
cd $DIRN
echo $DIRN
cp -f $DIRN1/fid.com .
cp -f $DIRN1/nmrproc.com .
./fid.com
./nmrproc.com
cd ..
end
Convert NMRPipe to Sparky
Next we also want to convert them to SPARKY format.
set FTS=`ls -v -d -1 */*.ft2`
foreach FT ($FTS)
set DNAME=`dirname $FT`
set BNAME=`basename $FT`
set FNAME=`echo $BNAME | cut -d'.' -f1`
echo $FT $DNAME $BNAME $FNAME
pipe2ucsf $FT ${DNAME}/${FNAME}.ucsf
end
Working with peaks
Check the peak list matches
Check that your peak list matches your spectrum.
Read the section in Check the peak list matches.
set DIRS=`cat fid_files.ls | sed 's/\/fid//g'`
sparky ${DIRS[1]}/test.ucsf
The final peak list is expected to be in:
/peak_lists/peaks_corr_final.list
And have been saved by SPARKY, so it is in this format SPARKY_list.
Check for peak movement
Your should check, that the peaks do not move at the different experiments. Try opening some random spectra, and overlay them in SPARKY.
Read the section in Check for peak movement.
sparky ${DIRS[1]}/test.ucsf ${DIRS[10]}/test.ucsf ${DIRS[25]}/test.ucsf ${DIRS[50]}/test.ucsf
Measuring peak heights
We will use the program NMRPipe seriesTab to measure the intensities.
seriesTab needs a input file, where the ppm values from a SPARKY list has been converted to spectral points.
The spectral points value depends on the spectral processing parameters.
Generate spectral point file
Create a file with spectral point information with script stPeakList.pl .
stPeakList.pl ${DIRS[1]}/test.ft2 ../peak_lists/peaks_corr_final.list > peaks_list.tab
cat peaks_list.tab
Make a file name of .ft2 fil
echo "test.ft2" > ft2_file.ls
Measure the height or sum in a spectral point box
mkdir peak_lists
foreach line ("`tail -n+2 exp_parameters.txt`")
set argv=( $line )
set DIRN=$1
set I=$2
set deltadof2=$3
set dpwr2slock=$4
set ncyc=$5
set trim=$6
set ss=$7
set sfrq=$8
echo $I
set FNAME=${I}_${deltadof2}_${dpwr2slock}_${ncyc}
cd $DIRN
seriesTab -in ../peaks_list.tab -out ${FNAME}_max_standard.ser -list ../ft2_file.ls -max
seriesTab -in ../peaks_list.tab -out ${FNAME}_max_dx1_dy1.ser -list ../ft2_file.ls -max -dx 1 -dy 1
seriesTab -in ../peaks_list.tab -out ${FNAME}_sum_dx1_dy1.ser -list ../ft2_file.ls -sum -dx 1 -dy 1
cp ${FNAME}_max_standard.ser ../peak_lists
cd ..
end
Analyse in relax
Preparation
making a spin file from SPARKY list
relax does not yet has the possibility to read spins from a sparky file. See support request.
So we create one.
set ATOMS=`tail -n+4 peaks_list.tab | awk '{print $7}'`
set SCRIPT=relax_2_spins.py
foreach I (`seq 1 ${#ATOMS}`)
set ATOM=${ATOMS[$I]}; set SPIN=`echo $ATOM | sed -e "s/N-HN//g"`; set RESN=`echo $SPIN | sed -e "s/[0-9]*//g"`; set RESI=`echo $SPIN | sed -e "s/[A-Za-z]//g"`
echo $ATOM $SPIN $RESN $RESI
echo "spin.create(spin_name='N', spin_num=$I, res_name='$RESN', res_num=$RESI, mol_name=None)" >> $SCRIPT
end
cat $SCRIPT
Prepare directory for relax run
Then we make a directory ready for relax
mkdir ../relax
cp exp_parameters.txt ../relax
cp exp_parameters_sort.txt ../relax
cp -r peak_lists* ../relax
cp peaks_list.tab ../relax
cp relax_2_spins.py ../relax
cd ../relax
See unique parameters
tail -n +2 exp_parameters.txt | awk '{print $3}' | sort -k1,1n | uniq
tail -n +2 exp_parameters.txt | awk '{print $4}' | sort -k1,1n | uniq
tail -n +2 exp_parameters.txt | awk '{print $5}' | sort -k1,1n | uniq
tail -n +2 exp_parameters.txt | awk '{print $6}' | sort -k1,1n | uniq
tail -n +2 exp_parameters.txt | awk '{print $7}' | sort -k1,1n | uniq
tail -n +2 exp_parameters.txt | awk '{print $8}' | sort -k1,1n | uniq
Analyse rx
Setup rx data
rx_1_ini.py
# Create the data pipe.
pipe_name = 'base pipe'
pipe_bundle = 'relax_fit'
pipe.create(pipe_name=pipe_name, bundle=pipe_bundle, pipe_type='relax_fit')
# Create the spins
script(file='relax_2_spins.py', dir=None)
# Set the spectra experimental properties/settings.
script(file='rx_3_spectra_settings.py', dir=None)
# Save the program state before run.
# This state file will also be used for loading, before a later cluster/global fit analysis.
state.save('ini_setup_rx', force=True)
rx_3_spectra_settings.py
# Set settings for experiment
import os
spin_locks = [0.0, 500.0, 1000.0, 2000.0, 5000.0, 10000.0]
lock_powers = [35.0, 39.0, 41.0, 43.0, 46.0, 48.0]
ncycs = [0, 4, 10, 14, 20, 40]
# Load the experiments settings file.
expfile = open('exp_parameters_sort.txt','r')
expfileslines = expfile.readlines()
fpipe = open('pipe_names_rx.txt','w')
for spin_lock in spin_locks:
for lock_power in lock_powers:
for i in range(len(expfileslines)):
line=expfileslines[i]
if line[0] == "#":
continue
else:
# DIRN I deltadof2 dpwr2slock ncyc trim ss sfrq
DIRN = line.split()[0]
I = int(line.split()[1])
deltadof2 = float(line.split()[2])
dpwr2slock = float(line.split()[3])
ncyc = int(line.split()[4])
trim = float(line.split()[5])
ss = int(line.split()[6])
set_sfrq = float(line.split()[7])
# Calculate spin_lock time
time_sl = 2*ncyc*trim
# Define file name for peak list.
FNAME = "%s_%s_%s_%s_max_standard.ser"%(I, int(deltadof2), int(dpwr2slock), ncyc)
sp_id = "%s_%s_%s_%s"%(I, int(deltadof2), int(dpwr2slock), ncyc)
if deltadof2 == spin_lock and dpwr2slock == lock_power and ncyc == ncycs[0]:
pipename = "%s_%s"%(int(deltadof2), int(dpwr2slock))
pipebundle = 'relax_fit'
pipe.copy(pipe_from='base pipe', pipe_to=pipename, bundle_to=pipebundle)
pipe.switch(pipe_name=pipename)
fpipe.write("%s %s"%(pipename, pipebundle)+"\n")
#print spin_lock, deltadof2, lock_power, dpwr2slock
if deltadof2 == spin_lock and dpwr2slock == lock_power:
# Load the peak intensities (first the backbone NH, then the tryptophan indole NH).
spectrum.read_intensities(file=FNAME, dir=os.path.join(os.getcwd(),"peak_lists"), spectrum_id=sp_id, int_method='height')
# Set the relaxation times.
relax_fit.relax_time(time=time_sl, spectrum_id=sp_id)
# Set the peak intensity errors, as defined as the baseplane RMSD.
spectrum.baseplane_rmsd(error=1.33e+03, spectrum_id=sp_id)
expfile.close()
fpipe.close()
Run by
relax rx_1_ini.py -t log_rx_1_ini.log
analyse rx data
rx_4_run.py
import os
from auto_analyses.relax_fit import Relax_fit
# Set settings for run.
GRID_INC = 11; MC_NUM = 3
# Load the initial state setup
state.load(state='ini_setup_rx.bz2')
# Load the pipe names.
fpipe = open('pipe_names_rx.txt','r')
pipenames = []
for line in fpipe:
pipenames.append([line.split()[0], line.split()[1]])
fpipe.close()
for pipename, pipebundle in pipenames:
pipe.switch(pipe_name=pipename)
results_directory = os.path.join("rx", pipename)
Relax_fit(pipe_name=pipename, pipe_bundle=pipebundle, file_root='rx', results_dir=results_directory, grid_inc=GRID_INC, mc_sim_num=MC_NUM, view_plots=False)
Run by
relax rx_4_run.py -t log_rx_4_run.log