Open main menu

Changes

B14

172 bytes added, 13:19, 6 May 2014
\alpha_- = k_{\textrm{AB}} - k_{\textrm{BA}} \\
\zeta = 2 \Delta \omega \, \alpha_- = h_1\\
\h_2 = Psi = (p_B k_{\alpha_textrm{EX}} -p_A k_{\textrm{EX}})^2 + 4 p_A p_B k_{\textrm{ex}}^2 - \Delta \omega^2 \\\phantom{\Psi} = ( p_A k_{\textrm{BAEX}} + p_B k_{\textrm{ABEX}} )^2 - \Delta \omega^2 \\\phantom{\Psi} = h_2k_{\textrm{ex}}^2 - \Delta \omega^2 \\
\xi = \frac{2\tau_{\textrm{CP}}}{\sqrt{2}}\sqrt{\Psi + \sqrt{\Psi^2 + \zeta^2}} = 2h_3 \tau_{\textrm{CP}} = \tau_{\textrm{CP}}E_0\\
\eta = \frac{2\tau_{\textrm{CP}}}{\sqrt{2}}\sqrt{-\Psi + \sqrt{\Psi^2 + \zeta^2}} = 2h_4 \tau_{\textrm{CP}} = \tau_{\textrm{CP}}E_2\\