Open main menu

Jacobian

sympy

as

output

output

from numpy import array, cos, sin, pi, transpose

R1 = 1.1
theta = pi / 4
R1rho_p = 10.
phi_ex = 1100.
kex = 2200.
we = 3300.

d_f_d_R1 = cos(theta)**2
d_f_d_theta = -2*R1*sin(theta)*cos(theta) + 2*(R1rho_p + kex*phi_ex/(kex**2 + we**2))*sin(theta)*cos(theta)
d_f_d_R1rho_p = sin(theta)**2
d_f_d_phi_ex = kex*sin(theta)**2/(kex**2 + we**2)
d_f_d_kex = (-2*kex**2*phi_ex/(kex**2 + we**2)**2 + phi_ex/(kex**2 + we**2))*sin(theta)**2
d_f_d_we = -2*kex*phi_ex*we*sin(theta)**2/(kex**2 + we**2)**2
jacobian_matrix = transpose(array( [d_f_d_R1 , d_f_d_theta, d_f_d_R1rho_p, d_f_d_phi_ex, d_f_d_kex, d_f_d_we] ) )

print jacobian_matrix