Open main menu

Changes

Using the {{caution}} template.
{{caution|This tutorial is incomplete.}}
 
= Intro =
This tutorial presently cover the [http://svn.gna.org/svn/relax/branches/ relax_disp branch].<br>This branch is under development, for testing it out, you need to use the source code. See [[Installation_linux#Checking_out_a_relax_branch]].
This tutorial is based on the analysis of R1rho data, analysed in a master thesis.
set OUT=$PWD/exp_parameters.txt
echo "# DIRN I deltadof2 dpwr2slock ncyc trim ss sfrqapod_rmsd" > $OUT
foreach I (`seq 1 ${#FIDS}`)
set FID=${FIDS[$I]}; set DIRN=`dirname $FID`
set dpwr2slock=`awk '/^dpwr2slock /{f=1;next}f{print $2;exit}' procpar`
set ncyc=`awk '/^ncyc /{f=1;next}f{print $2;exit}' procpar`
set trim=`awk '/^trim /{f=1;next}f{print $2;exit}' procpar`
set ss=`awk '/^ss /{f=1;next}f{print $2;exit}' procpar`
set sfrq=`awk '/^sfrq /{f=1;next}f{print $2;exit}' procpar`
set apodrmsd=`showApod test.ft2 | grep "REMARK Automated Noise Std Dev in Processed Data:" | awk '{print $9}'`echo "$DIRN $I $deltadof2 $dpwr2slock $ncyc $trim $ss $sfrq$apodrmsd" >> $OUT
cd ..
end
<source lang="bash">
sort -b -k 3,3n -k 4,4n -k 5,5n exp_parameters.txt | awk '{print $3, $4, $5}'
</source> = Get the process helper scripts =Go into the '''scripts''' directory and download these scripts to there. # [[Tutorial_for_Relaxation_dispersion_analysis_cpmg_fixed_time_recorded_on_varian_as_fid_interleaved_scripts#convert_all.com | convert_all.com]] # [[Tutorial_for_Relaxation_dispersion_analysis_cpmg_fixed_time_recorded_on_varian_as_fid_interleaved_scripts#fft_all.com | fft_all.com]] # [[Tutorial_for_Relaxation_dispersion_analysis_cpmg_fixed_time_recorded_on_varian_as_fid_interleaved_scripts#CPMG_2_convert_and_process.sh | CPMG_2_convert_and_process.sh ]] # [[Tutorial_for_Relaxation_dispersion_analysis_cpmg_fixed_time_recorded_on_varian_as_fid_interleaved_scripts#CPMG_3_fft_all.sh | CPMG_3_fft_all.sh]] # [[Tutorial_for_Relaxation_dispersion_analysis_cpmg_fixed_time_recorded_on_varian_as_fid_interleaved_scripts#NMRPipe_to_Sparky.sh | NMRPipe_to_Sparky.sh]] # [[Tutorial_for_Relaxation_dispersion_analysis_cpmg_fixed_time_recorded_on_varian_as_fid_interleaved_scripts#sparky_add.sh | sparky_add.sh]] # [[Tutorial_for_Relaxation_dispersion_analysis_cpmg_fixed_time_recorded_on_varian_as_fid_interleaved_scripts#stPeakList.pl | stPeakList.pl]]  Then make them executablesort -b -k 3,3n -k 4,4n -k 5, and add to PATH5n exp_parameters.<source lang="bash"txt >cd scripts# Change shelltcsh # Make them executablechmod +x *.sh *.com *.pl # Add scripts to PATHsetenv PATH ${PWD}:${PATH} # Go back to previous directorycd .exp_parameters_sort.txt
</source>
<source lang="bash">
# Copy data
cd ..
cp -r spectrometer_data spectrometer_data_processed
cd spectrometer_data_processed
== Change format to NMRPipe ==
<source lang="bash">
set FIDSCWD=$PWDset DIRS=`cat fid_files.ls| sed 's/\/fid//g'`set DIRN=`dirname cd ${FIDSDIRS[1]}`cd $DIRN
varian
</source>
# Now click, 'read parameters', check 'Rance-Kay'
# Remember to set Y-'Observe Freq MHz' to N15
# Remove '''sleep 5''' from the script.# Click 'Save script' to make '''fid.com''' file, and 'Quit', and run the script. == Spectral processing ==This step can be done by following wiki page [[Spectral_processing]].<br>Start '''nmrDraw''' by command nmrDraw == Convert and spectral processing all ==Now we want to convert all spectra.<br>You should have a '''fid.com''' and '''nmrproc.com''' in the first FID folder.<br>We now copy these script into all of the experimental folders, and execute them. <source lang="bash">cd $CWD set FIDS=`cat fid_files.ls`set DIRN1=`dirname $PWD/${FIDS[1]}` foreach I (`seq 2 ${#FIDS}`)set FID=${FIDS[$I]}; set DIRN=`dirname $FID`cd $DIRNecho $DIRNcp -f $DIRN1/fid.com .cp -f $DIRN1/nmrproc.com ../fid.com./nmrproc.comcd ..end</source> == Convert NMRPipe to Sparky ==Next we also want to convert them to SPARKY format.<source lang="bash">set FTS=`ls -v -d -1 */*.ft2` foreach FT ($FTS) set DNAME=`dirname $FT` set BNAME=`basename $FT` set FNAME=`echo $BNAME | cut -d'.' -f1` echo $FT $DNAME $BNAME $FNAME pipe2ucsf $FT ${DNAME}/${FNAME}.ucsfend</source> = Working with peaks = == Check the peak list matches ==Check that your peak list matches your spectrum.<br>Read the section in [[Tutorial_for_Relaxation_dispersion_analysis_cpmg_fixed_time_recorded_on_varian_as_fid_interleaved#Check_the_peak_list_matches | Check the peak list matches]]. <source lang="bash">set DIRS=`cat fid_files.ls | sed 's/\/fid//g'`sparky ${DIRS[1]}/test.ucsf</source> The final peak list is expected to be in:<source lang="bash">/peak_lists/peaks_corr_final.list</source>And have been saved by SPARKY, so it is in this format [[SPARKY_list]].
Now it is time to convert all == Check for peak movement ==Your should check, that the fid from varian format to NMRPipe with peaks do not move at the script different experiments. Try opening some random spectra, and overlay them in SPARKY.<br>Read the section in [[Tutorial_for_Relaxation_dispersion_analysis_cpmg_fixed_time_recorded_on_varian_as_fid_interleaved_scriptsTutorial_for_Relaxation_dispersion_analysis_cpmg_fixed_time_recorded_on_varian_as_fid_interleaved#CPMG_2_convert_and_process.sh Check_for_peak_movement | CPMG_2_convert_and_process.shCheck for peak movement]] .
<source lang="bash">
CPMG_2_convert_and_processsparky ${DIRS[1]}/test.shucsf ${DIRS[10]}/test.ucsf ${DIRS[25]}/test.ucsf ${DIRS[50]}/test.ucsf
</source>
 
== Measuring peak heights ==
We will use the program [[NMRPipe_seriesTab | NMRPipe seriesTab]] to measure the intensities.
 
'''seriesTab''' needs a input file, where the ppm values from a [[SPARKY_list | SPARKY list]] has been converted to spectral points.<br>
The spectral points value depends on the spectral processing parameters.
 
=== Generate spectral point file ===
Create a file with spectral point information with script
[[Tutorial_for_Relaxation_dispersion_analysis_cpmg_fixed_time_recorded_on_varian_as_fid_interleaved_scripts#stPeakList.pl | stPeakList.pl]] .
 
<source lang="bash">
stPeakList.pl ${DIRS[1]}/test.ft2 ../peak_lists/peaks_corr_final.list > peaks_list.tab
cat peaks_list.tab
</source>
 
=== Make a file name of .ft2 fil ===
<source lang="bash">
echo "test.ft2" > ft2_file.ls
</source>
 
=== Measure the height or sum in a spectral point box ===
<source lang="bash">
mkdir peak_lists
foreach line ("`tail -n+2 exp_parameters.txt`")
set argv=( $line )
set DIRN=$1
set I=$2
set deltadof2=$3
set dpwr2slock=$4
set ncyc=$5
set trim=$6
set ss=$7
set sfrq=$8
echo $I
set FNAME=${I}_${deltadof2}_${dpwr2slock}_${ncyc}
cd $DIRN
seriesTab -in ../peaks_list.tab -out ${FNAME}_max_standard.ser -list ../ft2_file.ls -max
seriesTab -in ../peaks_list.tab -out ${FNAME}_max_dx1_dy1.ser -list ../ft2_file.ls -max -dx 1 -dy 1
seriesTab -in ../peaks_list.tab -out ${FNAME}_sum_dx1_dy1.ser -list ../ft2_file.ls -sum -dx 1 -dy 1
cp ${FNAME}_max_standard.ser ../peak_lists
cd ..
end
</source>
 
= Analyse in relax =
 
== Preparation ==
=== Prepare directory for relax run ===
Then we make a directory ready for relax
<source lang="bash">
mkdir ../relax
cp exp_parameters.txt ../relax
cp exp_parameters_sort.txt ../relax
cp -r peak_lists* ../relax
cp peaks_list.tab ../relax
cd ../relax
</source>
 
=== See unique parameters ===
<source lang="bash">
tail -n +2 exp_parameters.txt | awk '{print $3}' | sort -k1,1n | uniq
tail -n +2 exp_parameters.txt | awk '{print $4}' | sort -k1,1n | uniq
tail -n +2 exp_parameters.txt | awk '{print $5}' | sort -k1,1n | uniq
tail -n +2 exp_parameters.txt | awk '{print $6}' | sort -k1,1n | uniq
tail -n +2 exp_parameters.txt | awk '{print $7}' | sort -k1,1n | uniq
tail -n +2 exp_parameters.txt | awk '{print $8}' | sort -k1,1n | uniq
</source>
 
== Scripts ==
=== 1_setup_r1rho.py ===
This a script file to be able to call the setup.
 
file: '''1_setup_r1rho.py'''.
<source lang="Python">
# Python module imports.
from os import getcwd, sep
 
# relax module imports.
from data_store import Relax_data_store; ds = Relax_data_store()
 
#########################################
#### Setup
# The pipe names.
if not (hasattr(ds, 'pipe_name') and hasattr(ds, 'pipe_bundle') and hasattr(ds, 'pipe_type')):
# Set pipe name, bundle and type.
ds.pipe_name = 'base pipe'
ds.pipe_bundle = 'relax_disp'
ds.pipe_type = 'relax_disp'
 
# The data path
if not hasattr(ds, 'data_path'):
ds.data_path = getcwd()
 
#########################################
### Start setup
# Create the data pipe.
pipe.create(pipe_name=ds.pipe_name, bundle=ds.pipe_bundle, pipe_type=ds.pipe_type)
 
# Read the spins.
spectrum.read_spins(file='1_0_46_0_max_standard.ser', dir=ds.data_path+sep+'peak_lists')
 
# Name the isotope for field strength scaling.
spin.isotope(isotope='15N')
 
# Load the experiments settings file.
expfile = open(ds.data_path+sep+'exp_parameters_sort.txt', 'r')
expfileslines = expfile.readlines()
expfile.close()
 
# In MHz
yOBS = 81.050
# In ppm
yCAR = 118.078
centerPPM_N15 = yCAR
 
## Read the chemical shift data.
chemical_shift.read(file='1_0_46_0_max_standard.ser', dir=ds.data_path+sep+'peak_lists')
 
## The lock power to field, has been found in an calibration experiment.
spin_lock_field_strengths_Hz = {'35': 431.0, '39': 651.2, '41': 800.5, '43': 984.0, '46': 1341.11, '48': 1648.5}
 
## Apply spectra settings.
for i in range(len(expfileslines)):
line = expfileslines[i]
if line[0] == "#":
continue
else:
# DIRN I deltadof2 dpwr2slock ncyc trim ss sfrq
DIRN = line.split()[0]
I = int(line.split()[1])
deltadof2 = line.split()[2]
dpwr2slock = line.split()[3]
ncyc = int(line.split()[4])
trim = float(line.split()[5])
ss = int(line.split()[6])
set_sfrq = float(line.split()[7])
apod_rmsd = float(line.split()[8])
spin_lock_field_strength = spin_lock_field_strengths_Hz[dpwr2slock]
 
# Calculate spin_lock time
time_sl = 2*ncyc*trim
 
# Define file name for peak list.
FNAME = "%s_%s_%s_%s_max_standard.ser"%(I, deltadof2, dpwr2slock, ncyc)
sp_id = "%s_%s_%s_%s"%(I, deltadof2, dpwr2slock, ncyc)
 
# Load the peak intensities.
spectrum.read_intensities(file=FNAME, dir=ds.data_path+sep+'peak_lists', spectrum_id=sp_id, int_method='height')
 
# Set the peak intensity errors, as defined as the baseplane RMSD.
spectrum.baseplane_rmsd(error=apod_rmsd, spectrum_id=sp_id)
 
# Set the relaxation dispersion experiment type.
relax_disp.exp_type(spectrum_id=sp_id, exp_type='R1rho')
 
# Set The spin-lock field strength, nu1, in Hz
relax_disp.spin_lock_field(spectrum_id=sp_id, field=spin_lock_field_strength)
 
# Calculating the spin-lock offset in ppm, from offsets values provided in Hz.
frq_N15_Hz = yOBS * 1E6
offset_ppm_N15 = float(deltadof2) / frq_N15_Hz * 1E6
omega_rf_ppm = centerPPM_N15 + offset_ppm_N15
 
# Set The spin-lock offset, omega_rf, in ppm.
relax_disp.spin_lock_offset(spectrum_id=sp_id, offset=omega_rf_ppm)
 
# Set the relaxation times (in s).
relax_disp.relax_time(spectrum_id=sp_id, time=time_sl)
 
# Set the spectrometer frequency.
spectrometer.frequency(id=sp_id, frq=set_sfrq, units='MHz')
 
 
# Read the R1 data
# We do not read the R1 data, but rather with R1.
# relax_data.read(ri_id='R1', ri_type='R1', frq=cdp.spectrometer_frq_list[0], file='R1_fitted_values.txt', dir=data_path, mol_name_col=1, res_num_col=2, res_name_col=3, spin_num_col=4, spin_name_col=5, data_col=6, error_col=7)
</source>
 
=== 2_pre_run_r2eff.py ===
This a script file to run the R2eff values only, with a high number of Monte Carlo simulations.
 
file: '''2_pre_run_r2eff.py'''.
<source lang="Python">
# Python module imports.
from os import getcwd, sep
import re
 
# relax module imports.
from auto_analyses.relax_disp import Relax_disp
from data_store import Relax_data_store; ds = Relax_data_store()
from specific_analyses.relax_disp.variables import MODEL_R2EFF
 
 
#########################################
#### Setup
# The data path
if not hasattr(ds, 'data_path'):
ds.data_path = getcwd()
 
# The models to analyse.
if not hasattr(ds, 'models'):
ds.models = [MODEL_R2EFF]
 
# The number of increments per parameter, to split up the search interval in grid search.
if not hasattr(ds, 'grid_inc'):
ds.grid_inc = 21
 
# The number of Monte-Carlo simulations, for the error analysis in the 'R2eff' model when exponential curves are fitted.
# For estimating the error of the fitted R2eff values,
# a high number should be provided. Later the high quality R2eff values will be read for subsequent model analyses.
if not hasattr(ds, 'exp_mc_sim_num'):
ds.exp_mc_sim_num = 2000
 
# The result directory.
if not hasattr(ds, 'results_dir'):
ds.results_dir = getcwd() + sep + 'results_R2eff'
 
## The optimisation function tolerance.
## This is set to the standard value, and should not be changed.
#if not hasattr(ds, 'opt_func_tol'):
# ds.opt_func_tol = 1e-25
#Relax_disp.opt_func_tol = ds.opt_func_tol
 
#if not hasattr(ds, 'opt_max_iterations'):
# ds.opt_max_iterations = int(1e7)
#Relax_disp.opt_max_iterations = ds.opt_max_iteration
 
 
#########################################
### Run script with setup.
script(file='1_setup_r1rho.py', dir=ds.data_path)
 
# To speed up the analysis, only select a few spins.
deselect.all()
 
# Load the experiments settings file.
residues = open(ds.data_path+sep+'global_fit_residues.txt', 'r')
residueslines = residues.readlines()
residues.close()
 
# Split the line string into number and text.
r = re.compile("([a-zA-Z]+)([0-9]+)([a-zA-Z]+)(-)([a-zA-Z]+)")
 
for i, line in enumerate(residueslines):
if line[0] == "#":
continue
else:
re_split = r.match(line)
#print re_split.groups()
resn = re_split.group(1)
resi = int(re_split.group(2))
isotope = re_split.group(3)
 
select.spin(spin_id=':%i@%s'%(resi, isotope), change_all=False)
 
# Run the analysis.
Relax_disp(pipe_name=ds.pipe_name, pipe_bundle=ds.pipe_bundle, results_dir=ds.results_dir, models=ds.models, grid_inc=ds.grid_inc, exp_mc_sim_num=ds.exp_mc_sim_num)
</source>
 
=== 3_analyse_models.py ===
This a script file to analyse the models.
 
file: '''3_analyse_models.py'''.
<source lang="Python">
# Python module imports.
from os import getcwd, sep
import re
 
# relax module imports.
from auto_analyses.relax_disp import Relax_disp
from data_store import Relax_data_store; ds = Relax_data_store()
from specific_analyses.relax_disp.variables import MODEL_R2EFF, MODEL_NOREX_R1RHO, MODEL_DPL94, MODEL_TP02, MODEL_TAP03, MODEL_MP05
 
#########################################
#### Setup
# The pipe names.
if not (hasattr(ds, 'pipe_name') and hasattr(ds, 'pipe_bundle') and hasattr(ds, 'pipe_type')):
# Set pipe name, bundle and type.
ds.pipe_name = 'base pipe'
ds.pipe_bundle = 'relax_disp'
ds.pipe_type = 'relax_disp'
 
# The data path
if not hasattr(ds, 'data_path'):
ds.data_path = getcwd()
 
# The models to analyse.
if not hasattr(ds, 'models'):
#ds.models = [MODEL_NOREX_R1RHO, MODEL_MP05, MODEL_DPL94, MODEL_TP02, MODEL_TAP03]
ds.models = [MODEL_NOREX_R1RHO, MODEL_DPL94]
 
# The number of increments per parameter, to split up the search interval in grid search.
if not hasattr(ds, 'grid_inc'):
ds.grid_inc = 10
 
# The number of Monte-Carlo simulations for estimating the error of the parameters of the fitted models.
if not hasattr(ds, 'mc_sim_num'):
ds.mc_sim_num = 10
 
# The model selection technique. Either: 'AIC', 'AICc', 'BIC'
if not hasattr(ds, 'modsel'):
ds.modsel = 'AIC'
 
# The previous result directory with R2eff values.
if not hasattr(ds, 'pre_run_dir'):
ds.pre_run_dir = getcwd() + sep + 'results_R2eff' + sep + 'R2eff'
 
# The result directory.
if not hasattr(ds, 'results_dir'):
ds.results_dir = getcwd() + sep + 'results_models'
 
## The optimisation function tolerance.
## This is set to the standard value, and should not be changed.
#if not hasattr(ds, 'opt_func_tol'):
# ds.opt_func_tol = 1e-25
#Relax_disp.opt_func_tol = ds.opt_func_tol
 
#if not hasattr(ds, 'opt_max_iterations'):
# ds.opt_max_iterations = int(1e7)
#Relax_disp.opt_max_iterations = ds.opt_max_iteration
 
#########################################
# Create the data pipe.
pipe.create(pipe_name=ds.pipe_name, bundle=ds.pipe_bundle, pipe_type=ds.pipe_type)
 
# Load the previous results into the base pipe.
results.read(file='results', dir=ds.pre_run_dir)
 
# If R1 is not measured, then do R1 fitting.
r1_fit=True
 
# Run the analysis.
Relax_disp(pipe_name=ds.pipe_name, pipe_bundle=ds.pipe_bundle, results_dir=ds.results_dir, models=ds.models, grid_inc=ds.grid_inc, mc_sim_num=ds.mc_sim_num, modsel=ds.modsel, r1_fit=r1_fit)
</source>
 
=== 4_inspect_results.py ===
This a script file to inspect results in relax.
 
file: '''4_inspect_results.py'''.
<source lang="Python">
# Python module imports.
from os import getcwd, sep
import re
 
# relax module imports.
from pipe_control.mol_res_spin import generate_spin_string, return_spin, spin_loop
from specific_analyses.relax_disp.data import generate_r20_key, loop_exp_frq
from specific_analyses.relax_disp.variables import MODEL_R2EFF, MODEL_NOREX_R1RHO, MODEL_DPL94, MODEL_TP02, MODEL_TAP03, MODEL_MP05
 
#########################################
#### Setup
results_dir = getcwd() + sep + 'results_models'
 
# Load the previous state
state.load(state='final_state.bz2', dir=results_dir)
 
# Display all pipes
pipe.display()
 
# Define models which have been analysed.
#MODELS = [MODEL_NOREX_R1RHO MODEL_MP05, MODEL_DPL94, MODEL_TP02, MODEL_TAP03, MODEL_MP05]
MODELS = [MODEL_NOREX_R1RHO, MODEL_DPL94]
 
# Print results for each model.
print("\n################")
print("Printing results")
print("################\n")
 
# Store all the pipe names.
pipes = []
 
for model in MODELS:
# Skip R2eff model.
if model == MODEL_R2EFF:
continue
 
# Switch to pipe.
pipe_name = '%s - relax_disp' % (model)
pipes.append(pipe_name)
pipe.switch(pipe_name=pipe_name)
print("\nModel: %s" % (model))
 
# Loop over the spins.
for cur_spin, mol_name, resi, resn, spin_id in spin_loop(full_info=True, return_id=True, skip_desel=True):
# Generate spin string.
spin_string = generate_spin_string(spin=cur_spin, mol_name=mol_name, res_num=resi, res_name=resn)
 
# Loop over the parameters.
print("\nOptimised parameters for spin: %s" % (spin_string))
for param in cur_spin.params + ['chi2']:
# Get the value.
if param in ['r1_fit', 'r2']:
for exp_type, frq, ei, mi in loop_exp_frq(return_indices=True):
# Generate the R20 key.
r20_key = generate_r20_key(exp_type=exp_type, frq=frq)
 
# Get the value.
value = getattr(cur_spin, param)[r20_key]
 
# Print value.
print("%-10s %-6s %-6s %3.8f" % ("Parameter:", param, "Value:", value))
 
# For all other parameters.
else:
# Get the value.
value = getattr(cur_spin, param)
 
# Print value.
print("%-10s %-6s %-6s %3.8f" % ("Parameter:", param, "Value:", value))
 
 
# Print the final pipe.
pipe.switch(pipe_name='%s - relax_disp' % ('final'))
print("\nFinal pipe")
 
# Loop over the spins.
for cur_spin, mol_name, resi, resn, spin_id in spin_loop(full_info=True, return_id=True, skip_desel=True):
# Generate spin string.
spin_string = generate_spin_string(spin=cur_spin, mol_name=mol_name, res_num=resi, res_name=resn)
 
# Loop over the parameters.
print("\nOptimised model for spin: %s" % (spin_string))
param = 'model'
 
# Get the value.
value = getattr(cur_spin, param)
print("%-10s %-6s %-6s %6s" % ("Parameter:", param, "Value:", value))
 
 
# Print the model selection
print("Printing the model selection")
model_selection(method='AIC', modsel_pipe='test', pipes=pipes)
pipe.display()
</source>
 
=== 5_clustered_analyses.py ===
This a script file to do a clustered analysis.
 
file: '''5_clustered_analyses.py'''.
<source lang="Python">
# Python module imports.
from os import getcwd, sep
import re
 
# relax module imports.
from auto_analyses.relax_disp import Relax_disp
from data_store import Relax_data_store; ds = Relax_data_store()
from pipe_control.mol_res_spin import spin_loop
from specific_analyses.relax_disp.variables import MODEL_R2EFF, MODEL_NOREX_R1RHO, MODEL_DPL94, MODEL_TP02, MODEL_TAP03, MODEL_MP05
 
#########################################
#### Setup
# The pipe names.
if not (hasattr(ds, 'pipe_name') and hasattr(ds, 'pipe_bundle') and hasattr(ds, 'pipe_type') and hasattr(ds, 'pipe_bundle_cluster')):
# Set pipe name, bundle and type.
ds.pipe_name = 'base pipe'
ds.pipe_bundle = 'relax_disp'
ds.pipe_type = 'relax_disp'
ds.pipe_bundle_cluster = 'cluster'
 
# The data path
if not hasattr(ds, 'data_path'):
ds.data_path = getcwd()
 
# The models to analyse.
if not hasattr(ds, 'models'):
#ds.models = [MODEL_NOREX_R1RHO, MODEL_DPL94, MODEL_TP02, MODEL_TAP03, MODEL_MP05]
ds.models = [MODEL_DPL94]
 
# The number of increments per parameter, to split up the search interval in grid search.
# This is not used, when pointing to a previous result directory.
# Then an average of the previous values will be used.
if not hasattr(ds, 'grid_inc'):
ds.grid_inc = 10
 
# The number of Monte-Carlo simulations for estimating the error of the parameters of the fitted models.
if not hasattr(ds, 'mc_sim_num'):
ds.mc_sim_num = 10
 
# The model selection technique. Either: 'AIC', 'AICc', 'BIC'
if not hasattr(ds, 'modsel'):
ds.modsel = 'AIC'
 
# The previous result directory with R2eff values.
if not hasattr(ds, 'pre_run_dir'):
ds.pre_run_dir = getcwd() + sep + 'results_models' + sep + ds.models[0]
 
# The result directory.
if not hasattr(ds, 'results_dir'):
ds.results_dir = getcwd() + sep + 'results_clustering'
 
## The optimisation function tolerance.
## This is set to the standard value, and should not be changed.
#if not hasattr(ds, 'opt_func_tol'):
# ds.opt_func_tol = 1e-25
#Relax_disp.opt_func_tol = ds.opt_func_tol
 
#if not hasattr(ds, 'opt_max_iterations'):
# ds.opt_max_iterations = int(1e7)
#Relax_disp.opt_max_iterations = ds.opt_max_iteration
 
#########################################
# Create the data pipe.
ini_pipe_name = '%s - %s' % (ds.models[0], ds.pipe_bundle)
pipe.create(pipe_name=ini_pipe_name, bundle=ds.pipe_bundle, pipe_type=ds.pipe_type)
 
# Load the previous results into the base pipe.
results.read(file='results', dir=ds.pre_run_dir)
 
# Create a new pipe, where the clustering analysis will happen.
# We will copy the pipe to get all information.
pipe.copy(pipe_from=ini_pipe_name, pipe_to=ds.pipe_name, bundle_to=ds.pipe_bundle_cluster)
pipe.switch(ds.pipe_name)
 
pipe.display()
 
# Now cluster spins.
#relax_disp.cluster('model_cluster', ":1-100")
for cur_spin, mol_name, resi, resn, spin_id in spin_loop(full_info=True, return_id=True, skip_desel=True):
# Here one could write some advanced selecting rules.
relax_disp.cluster('model_cluster', spin_id)
 
# See the clustering in the current data pipe "cdp".
for key, value in cdp.clustering.iteritems():
print key, value
 
# Print parameter kex before copying.
for cur_spin, mol_name, resi, resn, spin_id in spin_loop(full_info=True, return_id=True, skip_desel=True):
print(cur_spin.kex)
 
## Make advanced parameter copy.
# It is more advanced than the value.copy user function, in that clustering is taken into account.
# When the destination data pipe has spin clusters defined, then the new parameter values, when required, will be taken as the median value.
relax_disp.parameter_copy(pipe_from=ini_pipe_name, pipe_to=ds.pipe_name)
 
# Print parameter kex after copying.
for cur_spin, mol_name, resi, resn, spin_id in spin_loop(full_info=True, return_id=True, skip_desel=True):
print(cur_spin.kex)
 
pipe.display()
 
# Run the analysis.
Relax_disp(pipe_name=ds.pipe_name, pipe_bundle=ds.pipe_bundle_cluster, results_dir=ds.results_dir, models=ds.models, grid_inc=ds.grid_inc, mc_sim_num=ds.mc_sim_num, modsel=ds.modsel)
</source>
 
= See also =
[[Category:Tutorials]]
Trusted, Bureaucrats
4,223

edits