= Intro =The relaxation dispersion model for the numeric solution (NS) to the Bloch-McConnell equations for [[SQ CPMG-type data]] using complex conjugate matrices whereby the simplification $R^0_{2A{:R2Azero}} = R^0_{2B{:R2Bzero}}$ is assumed. The model is labelled as '''NS CPMG 2-site star''' in [[Relaxation dispersion citation for relax|relax]].
== Parameters ==
The NS CPMG 2-site star model has the parameters {$R_2^0${{:R2zero}}, $...$, $p_A${{:pA}}, $\Delta\omega${{:Deltaomega}}, $k_{ex{:kex}}$}.
== References ==
NThe function uses an explicit matrix that contains relaxation, exchange and chemical shift terms. It does the 180 deg pulses in the CPMG train with conjugate complex matrices. The approach of Bloch-McConnell can be found in chapter 3.1 of Palmer, A. G. 2004 ''Chem. Rev.'', '''104''', 3623-3640. This function was written, initially in MATLAB, in 2010. The code was submitted on this [http:/A/thread.gmane.org/gmane.science.nmr.relax.devel/4132 mailing list thread] by Paul Schanda.
== Related models ==
The [[Relaxation dispersion citation for relax|implementation of the NS CPMG 2-site star model in relax]] can be seen in the:
* [http://www.nmr-relax.com/manual/reduced_NS_2_site_star_CPMG_modelThe_reduced_NS_2_site_star_CPMG_model.html relax manual],
* [http://www.nmr-relax.com/api/3.1/lib.dispersion.ns_cpmg_2site_star-module.html API documentation],
* [http://www.nmr-relax.com/analyses/relaxation_dispersion.html#NS_CPMG_2-site_star relaxation dispersion page of the relax website].
== See also ==
[[Category:Relaxation_dispersionModels]][[Category:Dispersion models]][[Category:Relaxation dispersion analysis]]