Relax release changes
Jump to navigation
Jump to search
Contents
Version 3 of relax
relax 3.3 series
relax 3.3.0
- Improved model handling for the internal structural object. The set_model() method has been added to allow either a model number to be set to the first unnumbered model (in preparation for adding new models) or to allow models to be renumbered. The logic of the add_model() has also been changed. Rather than looping over all atoms of the first model and copying them, which does not work due to the model validity checks, the entire MolList (molecule list) data structure is copied using copy.deepcopy() to make a perfect copy of the structural data. The ModelList.add_item() method has also been modified to return the newly added or numbered model. This is used by the add_model() structural object method to obtain the model object.
- Updated the Mac OS X framework setting up instruction document. New sections have been added for the nose and matplotlib Python packages, as nose is needed for the numpy and scipy testing frameworks and matplotlib might be a useful optional dependency in the future. The mpy4py section has been updated to avoid the non-framework fink version of mpicc which cannot produce universal binaries. A few other parts also have small edits.
- Removed the Freecode section from the release checklist as Freecode has been permanently shut down. The old relax links are still there (http://freecode.com/projects/nmr-relax), but Freecode is dead (http://freecode.com/about).
- Fix for the internal structural object MolContainer.last_residue() method. This can now operate when no structural information is present, returning 0 instead of resulting in an IndexError.
- Updated the script for finding unused imports in the relax source code. Now the file name is only printed for Python files which have unused imports.
- Completely removed all mentions of Freecode from the release document. The old relax links are still there, but Freecode is dead.
- Updated the minfx version in the release checklist document to 1.0.8. This version has not been released yet, but it will include important fixes and additions for constrained parallelised grid searches.
- Fix for a broken link in the development chapter of the relax manual.
- Fixes for dead hyperlinks in the relaxation dispersion chapter of the relax manual. The B14 model links to http://www.nmr-relax.com/api/3.2/lib.dispersion.b14-module.html were broken as the B in B14 was capitalised.
- Sent in the verbosity argument value to the minfx.grid.grid_split() function. The minfx function in the next release (1.0.8) will now be more verbose, so this will help with user feedback when running the model-free analysis on a cluster or multi-core system using MPI.
- The time user function now uses the chronometer Oxygen icon in the GUI.
- Removed the line wrapping in the epydoc parameter section of the optimisation function docstrings. This is for the pipe_control.minimise module.
- More docstring line wrapping removal from pipe_control.minimise.
- Bug fix for the parameter units descriptions. This only affects a few rare parameters. The specific analysis API parameter object units() method was incorrectly checking if the units value is a function - it was checking the parameter conversion factor instead.
- Modified the align_tensor.init user function so that the parameters are now optional. This allows alignment tensors to be initialised without specifying the parameter values for that tensor.
- Modified profiling script to have different number of NCYC points per frequency. This is to complicate the data, so any erroneous reshaping of data is discovered. It is expected, that experiments can have different number of NCYC points per spectrometer frequency. Task #7807: Speed-up of dispersion models for clustered analysis.
- Initial try to alter the target function calc_CR72_chi2. This is the first test to restructure the arrays, to allow for higher dimensional computation. All numpy arrays have to have same shape to allow to multiply together. The dimensions should be [ei][si][mi][oi][di]. [Experiment][spins][spec. frq][offset][disp points]. This is complicated with number of disp point can change per spectrometer frequency. Task #7807: Speed-up of dispersion models for clustered analysis. This implementation brings a high overhead. The first test shows no winning of time. The creation of arrays takes all the time.
- Temporary changed the lib/dispersion/cr72.py function to unsafe state. This change turns-off all the safety measures, since they have to be re-implemented for higher dimensional structures.
- Altered profiling script to report cumulative timings and save to temporary files. Task #7807: Speed-up of dispersion models for clustered analysis. This indeed shows that the efficiency has gone down.
- Added print out of χ2 to profile script. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the creation of special numpy structures outside target function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified profiling script to calculate correct values when setting up R2eff values. This is to test, that the return of χ2 gets zero. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removing looping over exp and offset indices in calc_chi2. They are always 0 anyway. This brings a little speed. Task #7807: Speed-up of dispersion models for clustered analysis.
- In profiling script, moved up the calculation of values one level. This is to better see the output of the profiling iterations for CR72.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for calculation of the Larmor frequency per spin in profiling script. The frq loop should also be up-shifted. It was now extracted as 0.0. Task #7807: Speed-up of dispersion models for clustered analysis.
- Re-inserted safety checks in lib/dispersion/CR72.py file. This is re-inserted for the rank_1 cases. This makes the unit-tests pass again. Task #7807: Speed-up of dispersion models for clustered analysis.
- Important fix for extracting the correct shape to create new arrays. If using just one field, or having the same number of dispersion points, the shape would extend to the dispersion number. It would report [ei][si][mi][oi][di] when calling ndarray.shape. Shape always has to be reported as: [ei][si][mi][oi]. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made it easier to switch between single and cluster reporting in profiling script. Task #7807: Speed-up of dispersion models for clustered analysis.
- Important fix for the creation of the multi dimensional pA numpy array. It should be created as numpy.zeros([ei][si][mi][oi]) instead of numpy.ones([ei][si][mi][oi]). This allows for rapid testing of all dimensions with np.allclose(pA, numpy.ones(dw.shape)). pA can have missing filled out values, when the number of dispersion points are different per spectrometer frequency. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added unit tests demonstrating edge cases 'no Rex' failures of the model CR72 full, for a clustered multi dimensional calculation. This is implemented for one field. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Task #7807: Speed-up of dispersion models for clustered analysis.
- Re-implemented safety checks in lib/dispersion/cr72.py. This is now implemented for both rank-1 float array and of higher dimensions. This makes the unit tests pass for multi dimensional computing. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added unit tests demonstrating edge cases 'no Rex' failures of the model CR72 full, for a clustered multi dimensional calculation. This is implemented for three fields. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed that special numpy structure is also created for CR72. This makes most system tests pass. Task #7807: Speed-up of dispersion models for clustered analysis.
- Critical fix for the slicing of values in target function. This makes system test: Relax_disp.test_sod1wt_t25_to_cr72 pass. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added self.has_missing keyword in initialization of the Dispersion class. This is to test once, per spin or cluster. This saves a looping over the dispersion points, when collection the data. Task #7807: Speed-up of dispersion models for clustered analysis.
- Created multi dimensional error and value numpy arrays. This is to calculate the χ2 sum much faster. Reordered the loop over missing data points, so it is only initiated if missing points is detected. Task #7807: Speed-up of dispersion models for clustered analysis.
- Switch the looping from spin->frq to frq->spin. Since the number of dispersion points are the same for all spins, this allows to move the calculation of pA and kex array one level up. This saves a lot of computation. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed all the creation of special numpy arrays to be of float64 type. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the data filling of special numpy array errors and values, to initialization of Dispersion class. These values does not change, and can safely be stored outside. Task #7807: Speed-up of dispersion models for clustered analysis.
- Just a tiny little more speed, by removing temporary storage of χ2 calculation. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made copies of numpy arrays instead of creating from new. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added a self.frqs_a as a multidimensional numpy array. Task #7807: Speed-up of dispersion models for clustered analysis.
- Small fix for the indices to the errors and values numpy array. Task #7807: Speed-up of dispersion models for clustered analysis.
- Lowered the number of iterations to the profiling scripts. This is to use the profiling script as bug finder. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the calculation of dw_frq out of spin and spectrometer loop. This is done by having a special 1/0 spin numpy array, which turns on or off the values in the numpy array multiplication. The multiplication needs to first axis expand Δω, and then tile the arrays according to the numpy structure. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the calculation of pA and kex out off all loops. This was done by having two special 1/0 spin structure arrays. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed dw_frq_a numpy array, as it was not necessary. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed all looping over spin and spectrometer frequency. This is the last loop! Wuhu. Task #7807: Speed-up of dispersion models for clustered analysis.
- Reordered arrays for beauty of code. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made the back_calc array be initiated as copy of the values array. Task #7807: Speed-up of dispersion models for clustered analysis.
- Small edit to profiling script, to help bug finding. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fixed that arrays are correctly initiated with one or zero values. Task #7807: Speed-up of dispersion models for clustered analysis.
- Very important fix, for only replacing part of data array which have Nan values. Before, all values were replaced, which was wrong. Task #7807: Speed-up of dispersion models for clustered analysis.
- Needed to increase the relative tolerance when testing if pA array is 1. Now system test Relax_disp.test_hansen_cpmg_data_missing_auto_analysis passes. Also added some comments lines, to prepare for mask replace of values. For example if only some of etapos values should be replaced. Task #7807: Speed-up of dispersion models for clustered analysis.
- Restored profiling script to normal. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made the logic and comments much clearer about how to reshape, expand axis, and tile numpy arrays. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented a masked array search for where "missing" array is equal 1. This makes it possible to replace all values with this mask, from the value array. This eliminates the last loops over the missing values. It took over 4 hours to figure out, that the mask should be called with mask.mask, to return the same fulls structure, Task #7807: Speed-up of dispersion models for clustered analysis.
- Yet another small improvement for the profiling script. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed the multi dimensional structure of pA. pA is not multi-dimensional, and can just be multiplied with numpy arrays. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for testing of pA in lib function, when pA is just float. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified unit tests, so pA is sent to target function as float instead of array. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed the multi dimensional structure of kex. kex is not multi-dimensional, and can just be multiplied with numpy arrays. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for testing of kex in lib function, when kex is just float. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified unit tests, so kex is sent to target function as float instead of array. Task #7807: Speed-up of dispersion models for clustered analysis.
- Important fix for replacing values if eta_pos > 700 is violated. This fixes system test: Relax_disp.test_sod1wt_t25_to_cr72, which failed after making kex to a numpy float. The trick is to make a numpy mask which stores the position where to replace the values. Then replace the values just before last return. This makes sure, that not all values are changed. Task #7807: Speed-up of dispersion models for clustered analysis.
- Increased the kex speed to 1e7 in clustered unit tests cases. This is to demonstrate where there will be no excange. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added a multi-dimensional numpy array χ2 value calculation function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Called the newly created χ2 function to calculate for multi dimensional numpy arrays. Task #7807: Speed-up of dispersion models for clustered analysis.
- Renamed chi2_ND to chi2_rankN. This is a better name for representing multiple axis calculation. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made special ei, si, mi, and oi numpy structure array. This is for rapid speed-up of numpy array creation in target function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced self.spins_a with self.disp_struct. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made initialisation structures for Δω. Task #7807: Speed-up of dispersion models for clustered analysis.
- Initial try to reshape Δω faster. Task #7807: Speed-up of dispersion models for clustered analysis.
- Switched to use self.ei, self.si, self.mi, self.oi, self.di. This is for better reading of code. Task #7807: Speed-up of dispersion models for clustered analysis.
- Comment out the sys.exit(), which would make the code fail for wrong calculation of Δω. Task #7807: Speed-up of dispersion models for clustered analysis.
- Copied profiling script for CPMG model CR72 to R1ρ DPL94 model. The framework of the script will be the same, but the data a little different. Task #7807: Speed-up of dispersion models for clustered analysis.
- Started converting profiling script to DPL94. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced self.(ei,si,mi,oi,di) with self.(NE,NS,NM,NO,ND). These numbers represents the maximum number of dimensions, instead of index. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added the ei index, when creating the first dw_mask. Task #7807: Speed-up of dispersion models for clustered analysis.
- Reordered how the structures Δω init structures are created. Task #7807: Speed-up of dispersion models for clustered analysis.
- Clearing the dw_struct before calculation. Task #7807: Speed-up of dispersion models for clustered analysis.
- Started using the new way of constructing Δω. This is for running system tests. Note, somewhere in the Δω array, the frequencies will be different between the two implementations. But apparently, this does not matter. Task #7807: Speed-up of dispersion models for clustered analysis.
- Inserted temporary method to switch for profiling. Task #7807: Speed-up of dispersion models for clustered analysis.
- First try to speed-up the old Δω structure calculation. Task #7807: Speed-up of dispersion models for clustered analysis.
- Simplified calculation. Task #7807: Speed-up of dispersion models for clustered analysis.
- Yet another try to implement a fast Δω structure method. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented the fastest way to calculate the Δω structure. This uses the numpy ufunc multiply.outer function to create the outer array, and then multiply with the frqs_structure. Task #7807: Speed-up of dispersion models for clustered analysis.
- Renamed Δω temporary structure to generic structure. Task #7807: Speed-up of dispersion models for clustered analysis.
- Restructured the calculation of R2A0 and R2B0 to the most efficient way. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made the lib/dispersion/CR72.py to a numpy multi dimensional numpy array calculation. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed the catching when Δω is zero, to use masked array. Implemented backwards compatibility with unit tests. Task #7807: Speed-up of dispersion models for clustered analysis.
- Bugfix for testing if kex is zero. It was tested if kex was equal 1.0. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented masked replacement if fact is less that 1.0. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced isnan mask with function that catches all invalid values.
- Removed the masked replacement if fact is less than 1.0. This is very strange, but otherwise system test: Relax_disp.test_hansen_cpmg_data_missing_auto_analysis would fail. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed the slow allclose() function to test if R2A0 and R2B0 is equal. It is MUCH faster to just subtract and check sum is not 0.0. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced the temporary variable R2eff with back_calc, and used numpy subtract to speed up. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made the lib function into a pure numpy array calculation. This requires, that R2A0, R2B0 and Δω has same dimension as the dispersion points. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changes too unit tests, so data is sent to target function in numpy array format. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed the creation of an unnecessary structure by using numpy multiply. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the mask which finds where to replace values into the __init__ function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Copied profiling script for CR72 to B14 model. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified profiling script for the B14 model. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified model B14 lib file to faster numpy multidimensional mode. The implementations comes almost directly from the CR72 model file. Task #7807: Speed-up of dispersion models for clustered analysis.
- Reverted the use of the mask "mask_set_blank". It did not work, and many system tests started failing. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed the target function to handle the B14 model for faster numpy computation. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed unit test for B14 to match numpy input requirement. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added additional tests in B14, when math errors can occur. This is very easy with a conditional masked search in arrays. Task #7807: Speed-up of dispersion models for clustered analysis.
- Comment fix for finding when E0 is above 700 in lib function of B14. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed use of "asarray", since the variables are already arrays. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed target function for model CR72. To CR72 is now also the input of the parameters of R2A0, R2B0 and Δω. Δω is tested for zero, to return flat lines. It is faster to search in the smaller numpy array, than the 5 dimensional Δω array. This is for speed-up. R2A0 and R2B0 is also subtracted, to see if the full model should be used. In the same way, it is faster to subtract the smaller array. These small tricks are expected to give 5-10 pct. speeed-up. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made the lib function of CR72 accept the R2A0, R2B0 and Δω of the original array. This is for speed-up. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed unit-tests, to send in the original R2A0, R2B0 and dw_orig to the testing of the lib function CR72. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed profiling script to send R2A0, R2B0 and Δω, as original parameters to the lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed target function for model B14. To B14 now also send the input of the original parameters Δω. Δω is tested for zero, to return flat lines. It is faster to search in the smaller numpy array, than the 5 dimensional Δω array. This is for speed-up. These small tricks are expected to give 5-10 pct. speed-up. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made the lib function of B14 accept Δω of the original array. This is for speed-up. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed unit-tests, to send in the original dw_orig to the testing of the lib function B14. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed profiling script to send Δω as original parameters to the lib function B14. Task #7807: Speed-up of dispersion models for clustered analysis.
- Copied profiling script for CR72 model to TSMFK01 model. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified profiling script to be used for model TSMFK01. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified target function for model TSMFK01, to send in Δω as original parameter. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified lib function for model TSMFK01 to accept dw_orig as input and replaced functions to find math domain errors into maske replacements. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made unit tests for model TSMFK01 send in R2A0 and Δω as a numpy array. Task #7807: Speed-up of dispersion models for clustered analysis.
- Large increase in speed for model TSMFK01 by changing target functions to use multidimensional numpy arrays in calculation. This is done by restructuring data into multidimensional arrays of dimension [NE][NS][NM][NO][ND], which are number of spins, number of magnetic field strength, number of offsets, maximum number of dispersion point. The speed comes from using numpy ufunc operations. The new version is 2.4X as fast per spin calculation, and 54X as fast for clustered analysis.
- Replacing math domain checking in model DPL94, with masked array replacement. Task #7807: Speed-up of dispersion models for clustered analysis.
- First try to speed up model DPL94. This has not succeeded, since system test: Relax_disp.test_dpl94_data_to_dpl94 still fails. Task #7807: Speed-up of dispersion models for clustered analysis.
- Trying to move some of the structures into its own part. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for forgetting to multiply frqs to power 2. This was found by inspecting all print out before and after implementation. New implementation of DPL94 now passes all system and unit tests. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the expansion of the R1 structure out of the for loops. This is to speed-up the __init__ of the class of the target function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the packing of errors and values out of for loop in the __init__ class of target function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the multi dimensional expansion of inv_relax_times out of for loop. This can be done for all structures, which does not have missing points. Task #7807: Speed-up of dispersion models for clustered analysis.
- For inv_relax_times, expanded one axis, and tiled up to NR spins, before reshaping and blowing up to full structure. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the expansion of frqs out of for loops. Task #7807: Speed-up of dispersion models for clustered analysis.
- Documentation fix for description of input arrays to lib functions. Task #7807: Speed-up of dispersion models for clustered analysis.
- Converted TAP03 model to use multi dimensional numpy arrays. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made Δω in unit tests of TAP03 be of numpy array. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced the loop structure in target function of TAP03 with numpy arrays. This makes the model faster. Task #7807: Speed-up of dispersion models for clustered analysis.
- Reordered the initialization structure of the special numpy arrays. This was done in the init part of the target function of relaxation dispersion. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added model MODEL_TSMFK01 also get self.tau_cpmg calculated in init part. Task #7807: Speed-up of dispersion models for clustered analysis.
- Methods to replace math domain errors in model TP02, has been replaced with numpy masks. Documentation is also fixed. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for sending in Δω as numpy array in unit tests of model TP02. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced target function for model TP02, to use higher dimensional numpy array structures. That makes the model much faster. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for adding model TP02 to part of init class to initialize preparation of higher dimension numpy structures. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made the NOREX model a faster numpy array calculation. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed an unnecessary frq_struct in init of target function. frqs can just be expanded, and back_calc is cleaned afterwards with disp_struct. Task #7807: Speed-up of dispersion models for clustered analysis.
- Methods to replace math domain errors in model M61, has been replaced with numpy masks. Documentation is also fixed. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for sending in r1rho_prime and phi_ex_scaled as numpy array in unit tests of model M61. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced target function for model M61, to use higher dimensional numpy array structures. That makes the model much faster. Task #7807: Speed-up of dispersion models for clustered analysis.
- Methods to replace math domain errors in model M61b, has been replaced with numpy masks. Documentation is also fixed. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for sending in r1rho_prime and Δω as numpy array in unit tests of model M61b. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced target function for model M61b, to use higher dimensional numpy array structures. That makes the model much faster. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed number of points to be send to lib function of model TSMFK01. These are not used anymore. Also removed in corresponding unit tests. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed number of points and pB to be send to lib function of model TP02. Number of points are not used anymore. pB is calculated in lib function instead. Also removed in corresponding unit tests. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed number of points and pB to send to lib function of model TP02. pB is calculated in lib function instead. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed number of points, pB, kAB, kBA to be send to lib function of model B14. Number of points are not used anymore. pB is calculated in lib function instead. kAB, and kBA are calculated in lib functions instead. Fixed in target function. Fixed in lib function. Fixed in corresponding unit tests. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for sending number of points in target function of TSMFK01. This was removed in lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed number of points, pB, to be send to lib function of model TAP03. Number of points are not used anymore. pB is calculated in lib function instead. Fixed in target function. Fixed in lib function. Fixed in corresponding unit tests. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed number of points, to be send to lib function of model CR72. Number of points are not used anymore. Fixed in target function. Fixed in lib function. Fixed in corresponding unit tests. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed number of points, to be send to lib function of model DPL94. Number of points are not used anymore. Fixed in target function. Fixed in lib function. Fixed in corresponding unit tests. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed number of points, to be send to lib function of model M61. Number of points are not used anymore. Fixed in target function. Fixed in lib function. Fixed in corresponding unit tests. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed number of points, to be send to lib function of model M61b. Number of points are not used anymore. Fixed in target function. Fixed in lib function. Fixed in corresponding unit tests. Task #7807: Speed-up of dispersion models for clustered analysis.
- Methods to replace math domain errors in model MP05, has been replaced with numpy masks. Number of points has been removed, as the masks utility replaces this. Calculation of pB, has been moved to lib function for simplicity. Documentation is also fixed. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for sending in Δω as numpy array in unit tests of model MP05. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced target function for model MP05, to use higher dimensional numpy array structures. That makes the model much faster. Task #7807: Speed-up of dispersion models for clustered analysis.
- Methods to replace math domain errors in model LM63, has been replaced with numpy masks. Number of points has been removed, as the masks utility replaces this. Documentation is also fixed. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for sending in number of points in unit tests of model LM63. Task #7807: Speed-up of dispersion models for clustered analysis. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced target function for model LM63, to use higher dimensional numpy array structures. That makes the model much faster. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for replacement of values with mask, when φex is zero. This can be spin specific. System test: Relax_disp.test_hansen_cpmg_data_to_lm63 starts to fail: Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for sending in R20 and φex as numpy array in unit tests of LM63. This is after using masks as replacement. Task #7807: Speed-up of dispersion models for clustered analysis.
- 1 digit decrease in parameter check in system test: Relax_disp.test_hansen_cpmg_data_to_lm63. It is unknown, why this has occurred. Task #7807: Speed-up of dispersion models for clustered analysis.
- Methods to replace math domain errors in model IT99, has been replaced with numpy masks. Number of points has been removed, as the masks utility replaces this. pB is now moved to be calculated inside. This makes the lib function simpler. Documentation is also fixed. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for sending in R20 and Δω as numpy array in unit tests of IT99. This is after using masks as replacement. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced target function for model IT99, to use higher dimensional numpy array structures. That makes the model much faster. Task #7807: Speed-up of dispersion models for clustered analysis.
- Methods to replace math domain errors in model ns_cpmg_2site_expanded, has been replaced with numpy masks. Number of points has been removed, as the masks utility replaces this. pB is now moved to be calculated inside. This makes the lib function simpler. kAB and kBA is also now calculated here. Documentation is also fixed. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for sending in R20 and Δω as numpy array in unit tests of ns_cpmg_2site_expanded. This is after using masks as replacement. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced target function for model ns_cpmg_2site_expanded, to use higher dimensional numpy array structures. That makes the model much faster. I cannot get system test: Relax_disp.test_cpmg_synthetic_dx_map_points to pass. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for system test Relax_disp.test_cpmg_synthetic_dx_map_points. By just copying self.back_calc_a to self.back_calc, problem was solved. In specific_analysis.relax_disp.optimisation in function back_calc_r2eff(), the function gets the last values stores in the class function. This is in "class Disp_result_command(Result_command)" with self.back_calc = back_calc. And back_calc_r2eff() have return model.back_calc. Task #7807: Speed-up of dispersion models for clustered analysis.
- Methods to replace math domain errors in model ns_cpmg_2site_3d, has been replaced with numpy masks. Number of points has been removed, as the masks utility replaces this. pB is now moved to be calculated inside. This makes the lib function simpler. kAB and kBA is also now calculated here. Magnetization vector is also now filled in lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for unit tests of model NS CPMG 2-site 3D to the reduced input to the lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Change to the target function to the model NS CPMG 2-site 3D to use the reduced input to the lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed linked matrix/vector inner products into chained dot expressions. Task #7807: Speed-up of dispersion models for clustered analysis.
- Wrote the essential dot matrix up to be initiated earlier. Task #7807: Speed-up of dispersion models for clustered analysis.
- Lowered the number of dot iterations, by pre-prepare the dot matrix another round. Task #7807: Speed-up of dispersion models for clustered analysis.
- Turned Mint vector into a 7,1 matrix, so dimensions fit with evolution matrix. Task #7807: Speed-up of dispersion models for clustered analysis.
- Lowered the number of dot operations, by pre-preparing the evolution matrix another round. The power is in system tests always even. The trick to removing this for loop, would be to make a general multi dot function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the bulk operation of model NS CPMG 2-site 3D into the lib file. This is to keep the API clean. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed the unit test of NS CPMG 2-site 3D, after the input to the function has changed. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed the target function for NS CPMG 2-site 3D. This reflects the new API layout. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed the lib function of NS CPMG 2-site star, to get input of Δω and R2A0+R2B0 of higher dimensional type. This is to move the main operations from the target function to the lib function, and make the API code clean and consistent. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed the target function of NS CPMG 2-site star, to reflect the input to the function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made the dot evolution structure faster for NS CPMG 2-site 3D. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented the BLAS method of dot product, which should be faster. I cannot get the "out" argument to work. Task #7807: Speed-up of dispersion models for clustered analysis.
- Small fix for the dot method. But the out argument does not work. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented the dot method via blas. This needs a array with one more axis. Task #7807: Speed-up of dispersion models for clustered analysis.
- Last try to use the out argument. In the last dotting loop, the out argument wont work, no matter what I do. Task #7807: Speed-up of dispersion models for clustered analysis.
- Inner product fix in model NS CPMG 2-site 3D. Fix for system tests: Relax_disp.test_cpmg_synthetic_ns3d_to_b14, Relax_disp.test_cpmg_synthetic_ns3d_to_CR72, Relax_disp.test_cpmg_synthetic_ns3d_to_CR72_noise_cluster. The number of dotting with Mint, should correspond to the power. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced the temporary structure self.frqs_a to self.frqs, which works for all target functions. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced the temporary structure self.cpmg_frqs_a to self.cpmg_frqs, which works for all target functions. Task #7807: Speed-up of dispersion models for clustered analysis.
- Restructured all data structures into higher dimension in target function. Fix for the input to the different models. Restructured how to detect the number of offset and dispersion points. Task #7807: Speed-up of dispersion models for clustered analysis.
- Various index fixes, after the data structures have been reordered. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for unit test, where the dimension of points has to be one lower. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for plotting, since the back_calc now can hold more data points that cpmg frequencies. This is because the numpy array has been expanded to the maximum number of points. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented a frqs_squared calculation in the init of target function. This is to speed up the calculations. Task #7807: Speed-up of dispersion models for clustered analysis.
- Restructured frqs_H to higher dimension in target function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the calculation of Δω and ΔωH out of for loops for model MMQ CR72. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed looping over spin and frequencies for model MMQ CR72. Task #7807: Speed-up of dispersion models for clustered analysis.
- Temporary removed check for Δω = 0.0 in MMQ CR72. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed number of points to be parsed to model MMQ CR72. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed power to be parsed to MMQ CR72, since it is not used. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed MMQ CR72 to use multi dimensional data. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed unit test of MMQ CR72 to pass. Δω needs to be of numpy structure. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the calculation of Δω out of for loops for model NS MMQ 2-site. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified lib function for NS MMQ 2-site, to have looping over spins and frequencies inside lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fixed the use of higher dimensional data in NS MMQ 2-site SQ DQ ZQ. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for documentation in NS MMQ 2-site/SQ/DQ/ZQ/MQ. Now explains which dimension data should be in. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed the reshaping of Δω and ΔωH, since it is not dependent on experiment. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changed the calculation of inner product in model NS CPMG 2-site 3D. The out argument of numpy.dot is buggy, and should not be used. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added missing instances of cleaning the data. Task #7807: Speed-up of dispersion models for clustered analysis.
- Bug fix for model LM63 3-site. The index si has to be used to extract data to lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Temporary added system test: test_korzhnev_2005_all_data_disp_speed_bug. This makes a minimisation with 1 iteration, and so will give the χ2 value at the preset parameter values. This is χ2 value should give 162.5, but gives 74.7104. Task #7807: Speed-up of dispersion models for clustered analysis.
- Updated documentation on dimensionality of numpy array num_points. They are in dimension [NE][NS][[NM][NO], where oi gives the number of dispersion points at that offset. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for system test: test_korzhnev_2005_all_data. The masking for replacing values was wrong. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the cleaning of data points and replacing of values of out loop for model NS MMQ 2-site. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for structure cleaning and value replacing for model MMQ CR72. System test: test_korzhnev_2005_all_data revealed how this should be done properly. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for system test test_korzhnev_2005_all_data_disp_speed_bug. The precision is lowered, and now matches the original system test. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced index to numpy array from example [0][si][mi][oi] to [0, si, mi, oi]. Task #7807: Speed-up of dispersion models for clustered analysis.
- More replacing of numpy index. Task #7807: Speed-up of dispersion models for clustered analysis.
- Documentation fix, where a double bracket "[[" has been copied into all lib functions. Task #7807: Speed-up of dispersion models for clustered analysis.
- More fixes for numpy index in lib functions. Task #7807: Speed-up of dispersion models for clustered analysis.
- Restructured target function for NS MMQ 3-site to the new API structure of higher dimensional data. Task #7807: Speed-up of dispersion models for clustered analysis.
- Reordered the lib function for NS MMQ 3-site to use higher dimensional data. Task #7807: Speed-up of dispersion models for clustered analysis.
- Documentation fix for which dimensionality number of points have. Task #7807: Speed-up of dispersion models for clustered analysis.
- Documentation fix for the initial data structure of cpmg_frqs, spin_lock_nu1, r1. They were incorrect. Task #7807: Speed-up of dispersion models for clustered analysis.
- First attempt to implement target function for NS R1rho 2-site. But it does not work yet. Task #7807: Speed-up of dispersion models for clustered analysis.
- First attempt to implement lib function for NS R1rho 2-site. But it does not work yet. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fatal fix for calling inv_relax_time from relax_time variable. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removal of the temporary offset argument. Task #7807: Speed-up of dispersion models for clustered analysis.
- Documentation fix for the dimensionality of the input arrays. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented the target function for NS R1rho 3-site. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented the lib function for NS R1rho 3-site. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented target function for LM63 3-site. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented the lib function for LM63 3-site, for higher dimensional data. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed the number of disp points in target function for LM63 3-site, since it is no longer used, but have been replaced with mask replacements. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented class function in target class, to return back_calc values as list of lists. This is the back and forth conversion between the data structures implemented when gathering the data, and the data send to the library function of higher dimensionality. Task #7807: Speed-up of dispersion models for clustered analysis.
- Used the new class function: get_back_calc(), to get the data in the right structures when interpolating for graphs. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed superfluous check, after the returned data is now in right structure. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made changes to the dir argument of system test Relax_disp.test_r1rho_kjaergaard. This is to prepare for: sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff and sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1. This is also to test an expected bug, if R1 is not loaded. Task #7807: Speed-up of dispersion models for clustered analysis.
- The relaxation dispersion target function can now be set up when the optional frqs_H argument is None. This allows the profiling scripts to run.
- More stability fixes for the relaxation dispersion target function initialisation. The target function can now be initialised when the r1 and chemical_shift arguments are None.
- Split the system test test_r1rho_kjaergaard into a setup function, and a test function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Renamed system test test_r1rho_kjaergaard to test_r1rho_kjaergaard_auto. This corresponds to the use of the automatic analysis method. Task #7807: Speed-up of dispersion models for clustered analysis.
- Split system test test_r1rho_kjaergaard into test_r1rho_kjaergaard_auto and test_r1rho_kjaergaard_man. This is to test use of the manual way to analyse. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified all of Troels' dispersion profiling scripts to work with older relax versions. This is in preparation for obtaining some powerful timing statistics. The calls to the r2eff_*() functions are unnecessary and are the only failure point in the scripts between the current code in the disp_spin_speed branch and trunk or older versions of relax. So these function calls have been eliminated.
- Implemented system test test_r1rho_kjaergaard_missing_r1, for safety check if R1 data is not loaded. The system test passes, so target function is safe. Task #7807: Speed-up of dispersion models for clustered analysis.
- Python 3 support for the dispersion profiling scripts. The xrange() builtin function does not exist in Python 3, so this is now aliased to range() which is the same thing.
- Replaced double or triple hash-tags "##" with single hash-tags "#". Task #7807: Speed-up of dispersion models for clustered analysis.
- Copyright fixes for all the models, where Troels E. Linnet have made changes to make them functional for higher dimensional data. Task #7807: Speed-up of dispersion models for clustered analysis.
- Copyright fix for model TSMFK01. Sebastien Morin did not take part of implementing the TSMFK01 model. Task #7807: Speed-up of dispersion models for clustered analysis.
- Created a super script for profiling the relaxation dispersion models. This script will execute all of the current profiling scripts in the directory test_suite/shared_data/dispersion/profiling for both the current version of relax and any other specified version (current set to the 3.2.2 relax tag). It will run the scripts and relax versions interleaved N=10 times and extract the func_*() target function call profile timings. This interleaving makes the numbers much more consistent. Averages and standard deviations are then calculated, as well as the speed up between the two relax versions. The results are printed out in a format suitable for the relax release messages.
- Increased the number of iterations to 1000 in all of the profiling scripts. This is for better statistics in the disp_profile_all.py script, and makes the number consistent between the different models.
- Added a log file for comparing the speed of the disp_speed_branch to relax 3.2.2. This is from the disp_profile_all.py statistics generating script.
- Made the processor.return_object get the back_calc structure in the expected order. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fixed the ordering of the relax versions in the dispersion super profiling script disp_profile_all.py. This has also been fixed in the disp_spin_speed branch to relax 3.2.2 comparison log.
- Added a log file for comparing the speed of the disp_speed_branch to relax 3.2.1. This is from the disp_profile_all.py statistics generating script.
- Added a profiling script for the NS CPMG 2-site expanded dispersion model. The script was copied from that of the CR72 model, and it only needed to be changed in a few places. This is the first numeric model profiling script.
- Updated the profiling super script and log for the NS CPMG 2-site expanded model. This shows that the single spin calculation is 1.8 times faster, and the cluster of 100 11.7 times faster, when compared to relax 3.2.2.
- Modified all of the dispersion model profiling scripts. The single() function for timing the single spin target function speed has been modified to include a second outer loop over 100 'spins'. This means that the timing numbers are equivalent to the cluster timings, as both are then over 100 spins. This now allows not only relax version differences and model differences to be compared, but also the non-clustered and clustered analysis speeds.
- Added a script for profiling the NS CPMG 2-site 3D relaxation dispersion model. Again this only involved copying one of the other scripts and modifying a few variable and function names.
- Added the NS CPMG 2-site 3D model to the dispersion super profiling script. To handle the fact that this script has nr_iter set to 100 rather than 1000 (as otherwise it is too slow), a list of scaling factors has been created to scale all timing numbers to equivalent values.
- Added DPL94 profiling script. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified profiling script for TSMFK01, to use correct parameters kAB and R2A0. Or else, the lib functions is just calculating with zero? Task #7807: Speed-up of dispersion models for clustered analysis.
- Changes to profiling script of NS CPMG 2-site expanded. The model does not have R2A0 and R2B0, but only R2. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made changes to the profiling script of NS CPMG 2-site 3D. Need to use the full model, when r2a and r2b is specified. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changes to profiling script of NS CPMG 2-site expanded. The unpacking can be removed. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for the profiling script of NS CPMG 2-site 3D. The model should also be specified to full. Task #7807: Speed-up of dispersion models for clustered analysis.
- The disp_profile_all.py super script now prints out the current relax version information. This is so that the log files contain information about the repository revision and path.
- Copied profiling script of DPL94 to NS R1rho 2-site.
- Improved the final printout from the disp_profile_all.py dispersion model super profiling script.
- Added profiling script for NS R1rho 2-site. Task #7807: Speed-up of dispersion models for clustered analysis.
- The disp_profile_all.py dispersion model super profiling script is now executable.
- Decreased all nr_iter values by 10 and added more dispersion models to the super profiling script. This is for the dispersion model profiling scripts in test_suite/shared_data/dispersion/profiling/, all controlled by the disp_profile_all.py super profiling script for generating statistics using all of the other profiling scripts. The number of iterations needed to be decreased as otherwise it would now take almost 1 day to generate the statistics table.
- Moved the parter conversion in LM63 3-site into the lib function. This cleans up the target api function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Copied profiling script for DPL94 to TAP03.
- Copied profiling script for DPL94 to TP02.
- Copied profiling script for DPL94 to MP05.
- Copied profiling script for DPL94 to M61.
- Modified profiling script for TAP03 to be used. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified profiling script for TP02, to be used. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified profiling script for MP05. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified profiling script for M61. This is the last one. Task #7807: Speed-up of dispersion models for clustered analysis.
- Expansion of the disp_profile_all.py dispersion model super profiling scripts. The newly added profiling scripts for models M61, TP02, TAP03, and MP05 are now included in the super script to generate statistics for all of these as well. The nr_iter variable has also been changed to match the other analytic models, so that the standard deviations are lowered and the statistics are better.
- Moved the parameter conversion of MMQ CR72 into lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the parameter conversions of kAB, kBA and pB into lib function of NS MMQ 2-site. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the parameter conversion from target function to lib function for NS R1rho 2-site. Task #7807: Speed-up of dispersion models for clustered analysis.
- Updated the dispersion model speed statistics for the disp_spin_speed branch vs. relax-3.2.2. This now includes the NS CPMG 2-site 3D, DPL94, and NS R1rho 2-site dispersion models. The timings for the single spin analyses are now comparable to the clustered analysis, as the equivalent of 100 single spins is being used. The final printout is also in a better format to present for the relax release messages. These new results show the insane 160x speed up of the DPL94 model.
- Alignment improvements for the final printout from the dispersion model super profiling script. The log file has been updated with what the new formatting will look like.
- Updated the model names in the dispersion model super profiling script. The CR72, B14 and NS CPMG 2-site 3D models are the full, slower versions rather than the faster models with R20 = R2A0 = R2B0. The log file has been updated to match.
- Moved the parameter conversion for NS MMQ 3-site into lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Updated the dispersion model profiling comparison of the disp_spin_speed branch vs. relax-3.2.2. The M61, TP02, TAP03, and MP05 models are now included. The final printout has been manually updated to reflect the newest version of the disp_profile_all.py super profiling script.
- Moved the parameter conversion for NS R1rho 3-site into lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Copied profiling script for CR72, so there is now a normal and a full version.
- Copied profiling for B14 to normal and full model.
- Created a text file suitable for use as part of the relax release notes. This contains the statistically averaged profiling information of the speed of the dispersion models in the disp_spin_speed branch vs. relax-3.2.2. This file has been created so that it can be used as part of the release notes for the version of relax that contains the insane speed ups of this branch. This file will be updated as new models are profiled and if any more speed ups magically appear.
- Copied profiling script for NS CPMG 2-site 3D.
- Copied profiling script for NS CPMG 2-site star.
- Copied profiling script for No Rex.
- Modified profiling script for B14, to R2A0=R2B0. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented profiling script for NS CPMG 2-site 3D. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented profiling script for NS CPMG 2-site star and star full. Task #7807: Speed-up of dispersion models for clustered analysis.
- Copied profiling script to be used for LM63.
- Copied profiling script to model IT99.
- Added profiling script for IT99. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented profiling script for LM63. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the "eta_scale = 2.0**(-3.0/2.0)" out of lib function for MMQ CR72, since this is only needs to be computed once. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for spaces aroung "=" outside functions. Task #7807: Speed-up of dispersion models for clustered analysis.
- Critical fix for wrong space inserted in NS MMQ 3-site MQ. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fixed the input for unit test of MMQ CR72. The number of input parameters has been lowered. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added additional math domain checking in B14. This is when v1c is less than 1.0. Task #7807: Speed-up of dispersion models for clustered analysis.
- Comment fixing, for explaining the masking and replacing when Δω is zero. Task #7807: Speed-up of dispersion models for clustered analysis.
- Copied profiling script to be used for profiling the use of higher dimensional data for the numpy eig function.
- Implemented the collection of the 3D exchange matrix, for rank [NE][NS][NM][NO][ND][7][7]. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented test, to see if 3D exchange matrices are the same. This can be tested while running system test test_hansen_cpmg_data_to_ns_cpmg_2site_3D. Task #7807: Speed-up of dispersion models for clustered analysis.
- Shifted the computation of Rexpo two loops up. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added intermediate step with for loops. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added another intermediate step. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added function to compute the matrix exponential for higher dimensional data of shape [NE][NS][NM][NO][ND][7][7]. This is done by using numpy.einsum, to make the dot product of the last two axis. Task #7807: Speed-up of dispersion models for clustered analysis.
- Inserted intermediate step, to check if the matrix propagator to evolve the magnetization is equal when done for lower dimensional data of shape [7][7] and higher dimensional data of shape [NE][NS][NM][NO][ND][7][7]. A short example is shown at the wiki: http://wiki.nmr-relax.com/Numpy_linalg#Ellipsis_broadcasting_in_numpy.einsum. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented double speed of model NS CPMG 2-site 3D. This is done by moving the costly calculation of the matrix exponential out of the for loops. The trick was to find a method to do dot product of higher dimensions. This was done with numpy.einsum, example at: http://wiki.nmr-relax.com/Numpy_linalg#Ellipsis_broadcasting_in_numpy.einsum. Example: dot_V_W = einsum('...ij,...jk', V, W_exp_diag) where V, and W_exp_diag has shape [NE][NS][NM][NO][ND][7][7]. The profiling script shows a 2X speed up.
- Made notation consistent for variables, using "_i" to clarify extracted data from matrix. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the calculation the evolution matrix out of for loops. The trick is that numpy.einsum allows for dot product of higher dimension: The essential evolution matrix; This is a dot product of the outer [7][7] matrix of the Rexpo_mat and r180x_mat matrices, which have the shape [NE][NS][NM][NO][ND][7][7]; This can be achieved by using numpy einsum, and where ellipsis notation will use the last axis.
- Implemented system test: test_cpmg_synthetic_b14_to_ns3d_cluster. This is to catch failures of the model, when data is clustered. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed unused variables in NS CPMG 2-site 3D, to clean up the code. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added the NS matrices, rr1rho_3d_rankN, to collect the multi dimensional 3D exchange matrix, of rank [NE][NS][NM][NO][ND][6][6]. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added a check in lib/dispersion/ns_r1hro_2site.py, to see if the newly created multidimensional ns matrix of rank NE][NS][NM][NO][ND][6][6], is equal to the previous [6][6] matrix. It is. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added the relax_time to collection of rr1rho_3d_rankN matrix collection. This is to pre-multiply all elements with the time. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added a check, that the pre- relax_time multiplied multidimensional array, equal the previous. It does, to the sum of 1.0e-13. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made the function use the new multidimensional R_mat matrix. System test: test_tp02_data_to_ns_r1rho_2site still passes. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix to the matrix_exponential_rankN, to return the exact exponential for any higher dimensional square matrix of shape [NE][NS][NM][NO][ND][X][X]. The fix was to the eye(X), to make the shape the same as the input shape. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the costly calculation of the matrix exponential out of for loops. It was the numpy.eig and numpy.inv which was draining power. This speeds up model NS R1rho 2-site, by a factor 4X.
- Made the returned multidimensional rr1rho_3d_rankN, be of float64 type. Task #7807: Speed-up of dispersion models for clustered analysis.
- Cleaned up the code of NS R1rho 2-site, and removed the matrix argument to the function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed the parsing of a matrix to the lib function of NS R1rho 2-site. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added the function "rcpmg_star_rankN" for the collection of the multidimensional relaxation matrix for model NS CPMG 2-site star. Task #7807: Speed-up of dispersion models for clustered analysis.
- Insert check, that the newly created multidimensional matrix is the same. They are, but only to the fifth digit. Task #7807: Speed-up of dispersion models for clustered analysis.
- Started using the newly created multidimensional matrix. test_hansen_cpmg_data_to_ns_cpmg_2site_star. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added the system test: test_cpmg_synthetic_b14_to_ns_star_cluster, to check for the model is still working after change. Task #7807: Speed-up of dispersion models for clustered analysis.
- Started using the newly cR2 variable, extracted from higher dimensional data. This should be okay, but system test test_hansen_cpmg_data_to_ns_cpmg_2site_star, now fails.
- Changes of values to system test test_hansen_cpmg_data_to_ns_cpmg_2site_star. The values are changed, since χ2 is lower than before. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the costly finding of matrix exponential out of for loops for eR_tcp. Task #7807: Speed-up of dispersion models for clustered analysis.
- Rearranged the code, to properly show the nested matrix exponentials in dot functions. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the costly matrix_exponential of cR2 out of for loops. Task #7807: Speed-up of dispersion models for clustered analysis.
- Rearranged the dot code, for better view. Task #7807: Speed-up of dispersion models for clustered analysis.
- Cleaned up the code in model NS CPMG 2-site star. Task #7807: Speed-up of dispersion models for clustered analysis.
- Simplified model NS CPMG 2-site 3D. The expansion of matrices to higher dimensionality is not necessary. Task #7807: Speed-up of dispersion models for clustered analysis.
- Further cleaned up the code in NS CPMG 2-site star. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed input of matrix, Rr, Rex, RCS and R to model NS CPMG 2-site star. These matrices is now extracted from NS matrix function rcpmg_star_rankN. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented the collection of the multidimensional matrix m1 and m2 in model NS MMQ 2-site. Inserted also a check, that the newly computed matrix is equal. They are, to the 6 digit. Task #7807: Speed-up of dispersion models for clustered analysis.
- Started using the newly created multidimensional m1 and m2 matrices. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the costly calculation of matrix_exponential of M1 and M2 out of for loop, in model ns_mmq_2site_mq. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made the function matrix_exponential_rankN also find the exponential if the experiments indices are missing. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for an extra axis inserted in eye function, when dimensionality is only [NS][NM][NO][ND]. This also fixes the index in the lib function of ns_mmq_2site_mq. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented same functionality in mmq_2site_sq_dq_zq. Problem, following system test fails: test_korzhnev_2005_15n_dq_data, test_korzhnev_2005_15n_mq_data, test_korzhnev_2005_15n_sq_data, test_korzhnev_2005_1h_mq_data, test_korzhnev_2005_1h_sq_data, test_korzhnev_2005_all_data, test_korzhnev_2005_all_data_disp_speed_bug. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed grid search, and lowered number of iterations for system test: test_cpmg_synthetic_b14_to_ns3d_cluster, test_cpmg_synthetic_b14_to_ns_star_cluster. This is to speed them up, since they before took 30 seconds. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for ns_mmq_2site_mq. Variable was wrong called. There seems to be a serious problem more with MQ.
- Reinserted old code. This fixes: test_korzhnev_2005_15n_mq_data. Task #7807: Speed-up of dispersion models for clustered analysis.
- Forcing the dtype to be complex64, instead of complex128. This solves a range of system tests. The one who fails now is: test_korzhnev_2005_15n_zq_data, test_korzhnev_2005_1h_mq_data, test_korzhnev_2005_1h_sq_data. Task #7807: Speed-up of dispersion models for clustered analysis.
- Forces complex64 in ns_mmq_2site_sq_dq_zq instead complex128. This fixes system tests: test_korzhnev_2005_15n_zq_data,test_korzhnev_2005_1h_sq_data. Task #7807: Speed-up of dispersion models for clustered analysis.
- Force complex64 in ns_mmq_2site_mq. This solves all system tests. Forcing to be complex64, does not seems like a long standing solution, since complex128 is possible. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for using the old matrix_exponential of m1. One: test_korzhnev_2005_15n_sq_data is still failing. That still uses the matrix_exponential_rankN. There seems to be a problem with matrix_exponential_rankN, when doing complex numbers. Maybe the dtype has to get fixed? Use it as a input argument? It must be the einsum. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added the "dtype" argument to function matrix_exponential_rankN. This is to force the conversion of dtype, if they are of other type. This can be conversion from complex128 to complex64. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix the bug: "M2_i = M1_mat", which was causing the problems getting system tests to pass. Removed the specifications of which dtype, the initial matrices are created. They can be converted later, with the specification of dtype to matrix_exponential_rankN(). All system tests now pass. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the Bloch-McConnell matrix for 2-site exchange into lib/dispersion/ns_matrices.py. This is for consistency with the other code. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the matrices for Bloch-McConnell from lib ns_mmq_2site, since they are now defined in ns_matrices.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the Bloch-McConnell matrix for 3-site exchange, into the lib/dispersion/ns_matrices.py. This is to standardize the code. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed m1 and m2 to be sent to lib function of NS MMQ 2-site, since they are now populated inside the lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented the Bloch-McConnell matrix for 3-site exchange, for multidimensional data. Task #7807: Speed-up of dispersion models for clustered analysis.
- Inserted a check, that the new higher dimensional m1 and m2 matrices are equal to before. They are, to the 5 digit. Task #7807: Speed-up of dispersion models for clustered analysis.
- Started using the newly created higher dimensional Bloch-McConnell matrix for 3-site exchange. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the calculation of the matrix exponential out of for loops for NS MMQ 3-site MQ. Task #7807: Speed-up of dispersion models for clustered analysis.
- Converted NS MMQ 3-site/SQ/DQ/ZQ to calculate the matrix exponential out of the for loops. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed the complex64 to be used as dtype in matrix exponential. Fix for missing "_i" in variable. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed m1 and m2 to be sent to target function of ns_mmq_3site_chi2. They are now populated inside the lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Documentation and input fix for NS MMQ 2-site. The m1 and m2 matrices are populated inside the lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Renamed some numerical matrices, to get consistency in naming. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented multidimensional NS R1rho 3-site exchange matrix. Task #7807: Speed-up of dispersion models for clustered analysis.
- Inserted check, that newly multi dimensional matrix is equal the old. It is, to the 13 digit. Task #7807: Speed-up of dispersion models for clustered analysis.
- Started using the newly multidimensional 3D exchange matrix. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved the calculation of the matrix exponential out of the for loops for NS R1rho 3-site. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed the parameter "matrix" to be send to lib function of NS R1rho 3-site, since it is now populated inside the lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved parameter conversion for NS R1rho 3-site inside lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Cleaned up the Dispersion class target function, for creation of matrices, which is now populated inside the lib functions instead. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed pA and pB from the matrix population function rcpmg_star_rankN, since they are not used. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed pA and pB from the matrix population function rr1rho_3d_2site_rankN, since they are not used. Task #7807: Speed-up of dispersion models for clustered analysis.
- Documentation fix for the dimensionality for model NS R1rho 2-site. The data is lined up to be of form [NE][NS][NM][NO][ND]. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed pA, pB and pC from the matrix population function rr1rho_3d_3site_rankN, since they are not used. Task #7807: Speed-up of dispersion models for clustered analysis.
- Deleted the profiling of eig function profiling script. This was never implemented. Task #7807: Speed-up of dispersion models for clustered analysis.
- For all profiling scripts, added conversion to numpy array for CPMG frqs and spin_lock, since some models complained in 3.2.2, that they were of list types. Also fixed IT99 to only have 1 spin, since clustering is broken in 3.2.2. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified super profiling script, to allow input to script, where alternative version of relax is positioned. Collected the variables in a list of lists, for better overview. Added a print out comment to IT99, to remember the bug. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added comment field to super profiling script. Task #7807: Speed-up of dispersion models for clustered analysis.
- Math domain fix for NS CPMG 2-site expanded. This is when t108 or t112 is zero, in the multidimensional array, a division error occurs. The elements are first set to 1.0, to allow for computation. Then elements are later replaced with 1e100. Lastly, if the elements are not part of the "True" dispersion point structure, they are cleaned out. Task #7807: Speed-up of dispersion models for clustered analysis.
- Precision lowering of system test, test_korzhnev_2005_15n_sq_data and test_korzhnev_2005_1h_sq_data. The system tests does not fail on Linux 64-bit system, but only on Mac 32-bit system. This is due to floating error deviations. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added log files for super profiling against tags 3.2.1 and 3.2.2. Task #7807: Speed-up of dispersion models for clustered analysis.
- Copied lib.linear_algebra.matrix_exponential to lib.dispersion.matrix_exponential. The matrix exponential of higher dimensional data is only used in the dispersion part of relax.
- Added to __init__, the new lib.dispersion.matrix_exponential module. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added to unit_tests/_lib/_dispersion/__init__.py, the new unit test file: test_matrix_exponential.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added numpy array save files. They are the numpy array structures, which are send in from system test: Relax_disp.test_hansen_cpmg_data_to_ns_cpmg_2site_3D. These numpy array structures, are used in unit tests. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added unit test unit_tests/_lib/_dispersion/test_matrix_exponential.py to test the matrix exponential from higher dimensional data. lib.dispersion.matrix_exponential.matrix_exponential_rankN will match against lib.linear_algebra.matrix_exponential. Data which is used for comparison, comes from system test: Relax_disp.test_hansen_cpmg_data_to_ns_cpmg_2site_3D. Task #7807: Speed-up of dispersion models for clustered analysis.
- Renamed function to return data in unit test _lib/_dispersion/test_matrix_exponential.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix to lib/dispersion/matrix_exponential.py, since the svn copy command was used on non-updated version of the file. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added unit test for doing the matrix exponential for complex data. This test shows, that the dtype=complex64, should be removed from lib/dispersion/ns_mmq_2site.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added data for unit test for the testing of the matrix_exponential_rankN. Task #7807: Speed-up of dispersion models for clustered analysis.
- Expanded the dispersion profiling master script to handle any two relax versions. To compare two relax versions, for example 3.2.2 to 3.2.1, either the path1 and path2 variables or two command line arguments can be supplied. The first path should be for the newest version. This will allow for comparing the speed differences between multiple relax versions in the future.
- Split matrix_exponential_rankN into matrix_exponential_rank_NE_NS_NM_NO_ND_x_x and matrix_exponential_rank_NS_NM_NO_ND_x_x. Task #7807: Speed-up of dispersion models for clustered analysis.
- Moved numerical solution matrices into the corresponding lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Copied profiling scripts, to be used for 3-site models and MMQ models.
- Implemented profiling script for LM63 3-site. Task #7807: Speed-up of dispersion models for clustered analysis.
- Improved the relax version printouts for the dispersion model master profiling script. This now reports both relax versions.
- Removed a tonne of unused imports from the dispersion model profiling scripts. This is to allow most of the scripts to run on the relax 3.1.x versions, as well as to clean up the scripts. The unused imports were found using the command: pylint test_suite/shared_data/dispersion/profiling/*.py --disable=all --enable=unused-import.
- Added a relaxation dispersion model profiling log file for relax version 3.2.1 vs. 3.2.0. This is the output from the dispersion model profiling master script. It shows a 2.2 times increase in speed for the B14 and B14 full models, with all other models remaining at the same speed. This matches the changes for relax 3.2.1, the main feature of which is a major bugfix for the B14 models.
- The 'relax -v' command is now used for the dispersion model profiling script initial printout. This is to show the two different relax versions being compared.
- Modifications to the dispersion model profiling master script. The info.print_sys_info() function of the current relax version is being called at the start to show all information about the current system. This is useful to know the speed of the machine, the OS, the Python version and numpy version. The numpy version is important as future versions might optimise certain functions that are currently very slow, hence that could be a cause of model speed differences. In addition, the path variables path1 and path2 have been renamed to path_new and path_old to make it clearer which is which. And the individual profiling scripts are no longer copied to the base directory of the relax versions being compared, and are run in place.
- Added a relaxation dispersion model profiling log file for relax version 3.2.2 vs. 3.2.1. This is the output from the dispersion model profiling master script. It shows that the relax 3.2.2 release did not in fact feature "a large speed up of all analytic relaxation dispersion models" as described in the release notes at https://web.archive.org/web/. For the CPMG models there is a 1 to 2 times increase in speed. But for the R1ρ models, there is a 1 to 2 times decrease in speed.
- Added a relaxation dispersion model profiling log file for relax version 3.2.0 vs. 3.1.7. This is the output from the dispersion model profiling master script. It shows that there are no speed differences.
- Added a relaxation dispersion model profiling log file for relax version 3.1.7 vs. 3.1.6. This is the output from the dispersion model profiling master script. It shows that there are no speed differences.
- Modified profiling script for NS R1rho 3-site, to be functional. Task #7807: Speed-up of dispersion models for clustered analysis.
- Modified profiling script for NS R1rho 3-site linear to be functional. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added a relaxation dispersion model profiling log file for relax version 3.1.3 vs. 3.1.2 vs. 3.1.1. This is the output from the dispersion model profiling master script. It shows that there are no major speed differences between these relax versions.
- Added the system information printout to the dispersion model profiling master script output. This is for the log files comparing one version of relax to the previous version.
- Added profiling script for model MMQ CR72, Task #7807: Speed-up of dispersion models for clustered analysis.
- Fix for the replacement value for invalid values in model MMQ CR72. The value was set to use R20, but should instead be 1e100. Task #7807: Speed-up of dispersion models for clustered analysis.
- Copied profiling script from MMQ CR72, to NS MMQ 2-site and 3-site.
- Copied profiling script to NS MMQ 3-site linear.
- Implemented profiling script for NS MMQ 2-site. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented profiling script for NS MMQ 3-site and 3-site linear. Task #7807: Speed-up of dispersion models for clustered analysis.
- Speeded up model NS CPMG 2-site star, by moving the forming of the propagator matrix out of the for loops, and preform it. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added a relaxation dispersion model profiling log file for relax version 3.1.4 vs. 3.1.3. This is the output from the dispersion model profiling master script. It shows that there are no speed differences.
- Speeded up NS MMQ 2-site, by moving the forming of evolution matrix out of the for loops, and preform it. Task #7807: Speed-up of dispersion models for clustered analysis.
- Speeded up NS MMQ 3-site, by moving the forming of evolution matrix out of the for loops, and preform it. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added a relaxation dispersion model profiling log file for relax version 3.1.5 vs. 3.1.4. This is the output from the dispersion model profiling master script. It shows that there are no speed differences.
- Speeded up NS R1rho 2-site, by preforming the evolution matrices, and the M0 matrix in the init part of the target function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Speeded up NS R1rho 3-site, by preforming the evolution matrices, and the M0 matrix in the init part of the target function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Expanded the dispersion model profiling master script to cover all the new profiling scripts. This includes all 3-site and MMQ models. The list is now complete and covers all models. The only model not included in M61 skew which has redundant parameters and is not optimisable anyway.
- Added a relaxation dispersion model profiling log file for relax version 3.1.6 vs. 3.1.5. This is the output from the dispersion model profiling master script. It shows that there are almost no speed differences, except for a slight decrease in speed in the CR72 full model for single spins.
- Split system test test_tp02_data_to_ns_r1rho_2site into a setup and test part. Task #7807: Speed-up of dispersion models for clustered analysis.
- Implemented a clustered version of system test test_tp02_data_to_ns_r1rho_2site. Task #7807: Speed-up of dispersion models for clustered analysis.
- Inserted an extremely interesting development in NS R1rho 2-site. If one do a transpose of M0, one can calculate all the matrix evolutions in the start via numpy einsum. Since M0 is in higher a dimensions, one should not do a numpy transpose, but swap/roll the outer M0 6x1 axis. Task #7807: Speed-up of dispersion models for clustered analysis.
- Shortened the code dramatically for NS R1rho 2-site. It is possible to calculate all in "one" go, after having the transposed/rolled-back M0 magnetization. Task #7807: Speed-up of dispersion models for clustered analysis.
- Speeded up the code of NS R1rho 2-site. This was essential done to numpy einsum, and doing the dot operations in multiple dimensions. It was though necessary to realize, that to do the proper dot product operations, the outer two axis if M0 should be swapped, by rolling the outer axis one back. Task #7807: Speed-up of dispersion models for clustered analysis.
- Speeded up the code of NS R1rho 3-site. This was essential done to numpy einsum, and doing the dot operations in multiple dimensions. It was though necessary to realize, that to do the proper dot product operations, the outer two axis if M0 should be swapped, by rolling the outer axis one back. Task #7807: Speed-up of dispersion models for clustered analysis.
- For model NS CPMG 2-site 3D, the M0 matrix was preformed for higher dimensionality in init of target function. The transposes/rolled axis versions was also initiated. Task #7807: Speed-up of dispersion models for clustered analysis.
- Swapped the dot product position, when propagating the magnetisation in model NS CPMG 2-site 3D. This it to try to align to same method as in NS R1rho 2-site. Task #7807: Speed-up of dispersion models for clustered analysis.
- Lowered the looping in NS CPMG 2-site 3D, by preforming the initial dot product. Task #7807: Speed-up of dispersion models for clustered analysis.
- Speeded up NS CPMG 2-site 3D, by preforming the magnetisation. Task #7807: Speed-up of dispersion models for clustered analysis.
- Got rid of the inner evolution of the magnetization. If the looping over the number of CPMG elements is given by the index l, and the initial magnetization has been formed, then the number of times for propagation of magnetization is l = power_si_mi_di-1. If the magnetization matrix "Mint" has the index Mint_(i,k) and the evolution matrix has the index Evol_(k,j), i=1, k=7, j=7 then the dot product is given by: Sum_{k=1}^{k} Mint_(1,k) * Evol_(k,j) = D_(1, j). The numpy einsum formula for this would be: einsum('ik,kj -> ij', Mint, Evol). Following evolution will be: Sum_{k=1}^{k} D_(1, j) * Evol_(k,j) = Mint_(1,k) * Evol_(k,j) * Evol_(k,j). We can then realize, that the evolution matrix can be raised to the power l. Evol_P = Evoll. It will then be: einsum('ik,kj -> ij', Mint, Evol_P). Get which power to raise the matrix to. l = power_si_mi_di-1. Raise the square evolution matrix to the power l. evolution_matrix_T_pwer_i = matrix_power(evolution_matrix_T_i, l), Mint_T_i = dot(Mint_T_i, evolution_matrix_T_pwer_i) or Mint_T_i = einsum('ik,kj -> ij', Mint_T_i, evolution_matrix_T_pwer_i). Task #7807: Speed-up of dispersion models for clustered analysis.
- Tried to implement using lib.linear_algebra.matrix_power.square_matrix_power instead of matrix_power from numpy in NS CPMG 2-site 3D. Strangely, then system test: test_hansen_cpmg_data_to_ns_cpmg_2site_3D_full starts to fail. Task #7807: Speed-up of dispersion models for clustered analysis.
- Changes to unit test of NS CPMG 2-site 3D. This is after the new initiated M0 matrix in init of target function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Double speed in NS CPMG 2-site star, after using numpy.linalg.matrix_power instead of the lib version in relax. Task #7807: Speed-up of dispersion models for clustered analysis.
- Triple speed in NS MMQ 2-site, after using numpy.linalg.matrix_power instead of the lib version in relax. Task #7807: Speed-up of dispersion models for clustered analysis.
- Small fix for making sure that power is a integer in NS MMQ 2-site. Following system tests was failing: Relax_disp.test_korzhnev_2005_15n_dq_data, Relax_disp.test_korzhnev_2005_15n_sq_data, Relax_disp.test_korzhnev_2005_15n_zq_data, Relax_disp.test_korzhnev_2005_1h_sq_data, Relax_disp.test_korzhnev_2005_all_data, Relax_disp.test_korzhnev_2005_all_data_disp_speed_bug. They should already be integers, but is now solved. Task #7807: Speed-up of dispersion models for clustered analysis.
- Comment and spell fixing in NS CPMG 2-site 3D. Task #7807: Speed-up of dispersion models for clustered analysis.
- Triple speed in NS MMQ 3-site, after using numpy.linalg.matrix_power instead of the lib version in relax. Task #7807: Speed-up of dispersion models for clustered analysis.
- Updated the dispersion model profiling comparison of the disp_spin_speed branch vs. relax-3.2.2. This now includes all dispersion models. This shows the large speed increases in the numeric and MMQ models recently obtained. Note that something went wrong with the NS CPMG 2-site 3D full model for the clustered analysis, most times were around 24 seconds except for the first which was strangely 292 seconds.
- Updated the relaxation dispersion model profiling log file for relax version 3.2.2 vs. 3.2.1. This adds the MMQ and 3-site models to the log file. The new information shows that there was a 4.2 times speed up for the MMQ CR72 model between these two relax versions, both for single spins and clustered spins, a much greater improvement than any other of the models.
- Removed the now redundant disp_profile_all_3.2.2.table.txt dispersion model profiling table. As the dispersion model profiling master script now covers all dispersion models, the output from this script produces this table exactly. Therefore the end of the log files saved from running this script contains this table.
- Initiated lengthy profiling script, that shows that doing square numpy matrix_power on strided data, can speed up the calculation by factor 1.5. The profiling script can quickly be turned into a unit test, and includes small helper functions to calculate how to stride through the data. Task #7807: Speed-up of dispersion models for clustered analysis.
- First try to implement function that will calculate the matrix exponential by striding through data. Interestingly, it does not work. These system tests will fail: test_hansen_cpmg_data_to_ns_cpmg_2site_3D, test_hansen_cpmg_data_to_ns_cpmg_2site_3D_full. Task #7807: Speed-up of dispersion models for clustered analysis.
- Added matrix_power to the init file in lib/dispersion. Task #7807: Speed-up of dispersion models for clustered analysis.
- Deleted the printout in dep_check. The printouts are only used for the essential packages before calling sys.exit(). Task #7807: Speed-up of dispersion models for clustered analysis.
- Added the missing "self.num_exp" to target function. Testing on older system, this was failing the system test. It is a wonder how these lines in __init__ could be performed without this.
- Fix for unit test passing on old numpy systems. The error was: ValueError: setting an array element with a sequence. Task #7807: Speed-up of dispersion models for clustered analysis.
- Expanded the dispersion target function class documentation. The NE, NS, NM, NO, and ND notation is now explained.
- Added Ti and NT to the dispersion target function class documentation.
- Slight speed up of the B14 and B14 full dispersion models by minimising repetitive maths.
- Initial try to write up a 2x2 matrix by closed form. Task #7807: Speed-up of dispersion models for clustered analysis.
- Made the validation check in profiling of matrix_power check all values. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced all self.spins with self.NS in target function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced all self.num_exp with self.NE in target function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Replaced all self.num_frq with self.NM in target function. Task #7807: Speed-up of dispersion models for clustered analysis.
- A very small speed up to the CR72 dispersion models by minimising repetitive maths operations. The kBA and kAB rates are used to simplify the Psi calculation, dropping from 3 to 2 multiplications and removing a squaring operation. The Dpos and Dneg value calculations have been simplified to drop one multiplication operation. And the calculation of eta_scale / cpmg_frqs now only occurs once rather than twice.
- Removal of a tonne of unused imports in the lib.dispersion package. These were identified using the command "pylint * --disable=all --enable=unused-import".
- A very small speed up to the MMQ CR72 dispersion model by minimising repetitive maths operations. This matches the recent change for the CR72 model, though the Psi calculation was already using the fast form.
- Created a master profiling script for comparing the speed between different dispersion models. This is similar to the disp_profile_all.py script except it only operates on a single relax version. The output is then simply the timings, with statistics, of the calculation time for 100 function calls for 100 spins (either 10,000 function calls for single spins or 100 function calls for the cluster of 100 spins). The output of the script for the current disp_spin_speed branch code has also been added.
- Critical fix for the recalculation of tau cpmg, when plotting for numerical models. The interpolated dispersion points with tau_cpmg was calculated with frq, instead of cpmg_frq. Task #7807: Speed-up of dispersion models for clustered analysis.
- The new dispersion model profiling master script now includes links to the relax wiki. The models are no longer presented by name but rather by the relax wiki links for each model (see Category:Relaxation dispersion analysis for all these links). This is to improve the Google rank of the relax wiki, as these links may appear in a number of locations.
- Removal of many unused imports in the disp_spin_speed branch. These were detected using the devel_scripts/find_unused_imports.py script which uses pylint to find all unused imports. The false positives also present in the trunk were ignored.
- Code validation of lib/dispersion/b14.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/cr72.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/dpl94.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/lm63_3site.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/lm63.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/m61b.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/m61.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/matrix_exponential. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/mp05.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/ns_cpmg_2site_expanded.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/ns_cpmg_2site_star.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/ns_mmq_2site.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/ns_mmq_3site.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/ns_r1rho_2site.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/ns_r1rho_3site.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/tap03.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/tp02.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of lib/dispersion/two_point.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Code validation of target_functions/relax_disp.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- For model NS MMQ 3-site, moved the parameter conversion of ΔωAB from target function to lib function. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed chi sum initialisation in func_ns_mmq_2site() as this is not used. Task #7807: Speed-up of dispersion models for clustered analysis.
- Documentation fix for the get_back_calc() function in target_function/relax_disp.py. Task #7807: Speed-up of dispersion models for clustered analysis.
- Removed unnecessary repetitive calculation of kex2 in model DPL94. Task #7807: Speed-up of dispersion models for clustered analysis.
- API documentation fixes, where a "\" is the last character on the line. There should be a space " ", ending this character. Task #7807: Speed-up of dispersion models for clustered analysis.
- Updated the minfx version number to 1.0.9 in the release checklist document. This as of yet unreleased version contains an important fix for parallelised grid searches when the number of increments is set to one (i.e. a preset parameter).
- Fix for the _prompt.test_align_tensor.Test_align_tensor.test_init_argfail_params unit test. As the alignment tensor can now be initialised as None, the None value can be accepted and a different RelaxError is raised when the params argument is incorrectly supplied.
- Added a new set of icons for use with the minimisation user functions. These are of the Rosenbrock function and are much better suited for small icons than the current OpenDX 3D isosurface plots. The matplotlib figure originates from public domain code at http://commons.wikimedia.org/wiki/File:Rosenbrock_function.svg.
- Redesign of the optimisation user functions calculate, grid_search, and minimise. In preparation for expanding the number of optimisation user functions, these three current user functions have been shifted into the new minimise user function class. The calc user function is now accessed as minimise.calculate. The grid search as minimise.grid_search. And minimisation is via the minimise.execute user function. The icon used for the new user function class is the Rosenbrock function or the banana optimisation problem. As this is such a radical change, a huge number of changes in the relax source code, the sample scripts, the user manual, and the test suite were required.
- Created the new minimise.grid_zoom user function. This allows the grid zoom level to be set. The value is stored in the current data pipe and will be used later by the minimise.grid_search user function.
- The minimise.grid_zoom user function now uses the zoom-in Oxygen icon.
- Created the Relax_fit.test_zooming_grid_search system test. This will be used to test the implementation of the zooming grid search. The relaxation curve-fitting analysis should be one of the fastest for testing this.
- Added the print_model_title() method to the specific analysis base API class. This will be used to format and print out the information returned by the model_info() API method.
- Implemented the print_model_title() specific analysis API method for the dispersion analysis.
- Modified the specific analysis API _model_loop_spin() common method. This now additionally returns the spin ID string to allow the corresponding spin container to be identified.
- Implemented the specific analysis API common method _print_model_title_spin(). This is for the corresponding _model_loop_spin() method. It can be aliased in the specific analyses to provide the print_model_title() API method.
- Aliased the _print_model_title_spin() specific analysis API common method in a few analyses. This provides the print_model_title() API method for the J(ω) mapping, consistency testing, and relaxation curve fitting analyses.
- Updated all the specific analysis methods affected by the _model_info_spin() API method change. This is for the change whereby the common API method now returns the spin ID string as well.
- Implemented get_param_names() and get_param_values() for the relaxation curve-fitting analysis. These are part of the specific analysis API.
- Created the specific analysis API return_parameter_object() function. This is used by the non-specific analysis code to obtain the parameter object (a singleton object). It will allow for more direct access to the parameter information.
- Created the parameter object infrastructure for adding the grid search lower and upper bounds. The _add() method now accepts the grid_lower and grid_upper keyword arguments, which can be either values or functions. These are then stored in the _grid_lower and _grid_upper class dictionaries. The public methods grid_lower() and grid_upper() have been added to return the value corresponding to the given parameter.
- Modified the specific analysis parameter object grid_lower() and grid_upper() methods. These now accept the model information from the model_loop() API method and send that into an grid lower and upper functions. These functions will require the information to pull out the correct spin, spin cluster, or other information from the current data pipe to determine what the bounds should be.
- Implemented infrastructure in the grid_search user function in preparation for the zooming grid. The grid search backend now calls the new grid_bounds() function. This takes the lower and upper bounds as arguments, uses the specific API to determine the per-model parameter grid search bounds, and then returns a per model list of lower and upper bounds. The specific API get_param_names() and get_param_values() are called to obtain the current model parameter names and values, and then the parameter names and model info are used in the new parameter object grid_lower() and grid_upper() methods to obtain the bounds. This shifts all of the grid search bounds logic out of the specific analyses and into the grid search backend, so it should allow the specific analysis code to be simplified.
- More modifications of the minimise.grid_search user function backend. The grid_bounds() function has been renamed to grid_setup(), and it now accepts and processes the inc user function argument. The error checking code of the relaxation curve-fitting grid_search_setup() optimisation function has been shifted into this analysis independent grid_setup() function to shift the minimise.grid_search user function error checking out of the specific analyses. The function now scales the parameter bounds, using the yet-to-be implemented scaling() method of the parameter object. And the grid search increments are converted into a per-model list of lists.
- Created the parameter object infrastructure for registering parameter scalings. The _add() method now accepts the scaling keyword argument, which can be either a value or function. This is then stored in the _scaling dictionary. The public method scaling() has been added to return the scaling factor corresponding to the given parameter.
- Modified the analysis specific API optimisation method. The base calculate(), grid_search() and minimise() methods now all accept the scaling_matrix argument, and the minimise() scaling argument has been removed. This scaling_matrix argument should be a per-model list of scaling matrices. To handle the change, the pipe_control.minimise.assemble_scaling_matrix() function has been created. This uses the new parameter object scaling values to create the list of scaling matrices. This will in the end replace all of the analysis specific assemble_scaling_matrix() functions and simplify their optimisation code paths.
- Changed the order of operations in the minimisation user function backends. The specific analysis API overfit_deselect() method needs to be called before any grid bounds, increments, or the scaling matrices are assembled. This is for the cases when the grid bounds or scaling factors are functions rather than values.
- Converted the relaxation curve-fitting analysis to the new grid bounds and scaling factor design. The parameter object now registers the grid bounds and scaling factors for all of the curve-fitting parameters. This includes three functions i_scaling(), i0() and iinf() in the specific_analyses.relax_fit.parameter_object module for calculating some of these values. The specific_analyses.relax_fit.parameters.assemble_scaling_matrix() function has been deleted as this is now provided by the upstream code in pipe_control.minimise. And the API methods grid_search() and minimise() has been modified to accept the list of scaling matrices. As the grid bounds and increments are now handled by the upstream pipe_control.minimise.grid_setup() function, the specific_analyses.relax_fit.optimisation.grid_search_setup() function was redundant and was deleted.
- Created the consistency testing specific API method get_param_names(). This is now required for the minimise.calculate user function, specifically for the analysis independent assemble_scaling_matrix() function. The get_param_names() method simply returns the fixed list of parameter names.
- Standardisation of the specific analysis API with respect to the model_loop() and base_data_loop(). The model information arguments for the data returned by model_loop(), and the data arguments for the data arguments for the data returned by base_data_loop() have been standardised throughout the API.
- Epydoc parameter order rearrangement in the specific analysis API base class.
- Updated the specific analysis API common methods for the recent model_info argument changes.
- Updated all of the specific API calculate() methods to accept the scaling_matrix argument. The list of per-model scaling matrices is now created independently of the analysis type by the pipe_control.minimise methods for the minimise.calculate, minimise.grid_search and minimise.execute user functions and sent into the specific analysis backend.
- Updated all of the specific API grid_search() methods to accept the scaling_matrix argument. The list of per-model scaling matrices is now created independently of the analysis type by the pipe_control.minimise methods for the minimise.calculate, minimise.grid_search and minimise.execute user functions and sent into the specific analysis backend. The argument is also passed into the minimise() API method from the grid_search() method when that is used.
- Updated all of the specific API minimise() methods to accept the scaling_matrix argument. The list of per-model scaling matrices is now created independently of the analysis type by the pipe_control.minimise methods for the minimise.calculate, minimise.grid_search and minimise.execute user functions and sent into the specific analysis backend.
- Fix for the Monte Carlo simulations for the model_info argument changes in the specific API.
- Fixes for the consistency testing and J(ω) mapping calculate() methods. This is for the changes to the data_init() specific analysis API method.
- More fixes for the Monte Carlo simulations for the model_info argument changes in the specific API.
- Updated all of the data_init() specific API calls where the spin ID is expected.
- Fixes for the _data_init_spin() specific API common method. The data returned from _base_data_loop_spin() is just the spin ID, the spin container is not included.
- Updated the eliminate user function backend to work with the model_info argument changes in the specific API.
- The new pipe_control.minimise module functions can now handle models with no parameters. The new assemble_scaling_matrix() and grid_setup() functions will now handle models with no parameters, as this is required for the relaxation dispersion analysis.
- More fixes for the eliminate user function backend. This is for the model_info argument changes in the specific API.
- Fixes for the grid search backend for a recent breakage and expansion of its capabilities. The user supplied lower and upper bounds for the grid search were no longer being scaled via the scaling matrix. In addition, the code has been refactored to be simpler and more flexible. The user can now supply just the lower or just the upper bounds and the grid search will work.
- The grid search setup function now prints out the grid search bounds to be used. This is in the pipe_control.minimise.grid_setup() function, hence it is analysis independent. This is useful feedback for the user to know what the grid search is doing. And it will be even more useful for the zooming grid search to understand what is happening.
- The grid search setup printout now also included the number of increments for each parameter.
- Modified the new print_model_title() specific analysis API method. This now accepts the prefix argument for creating different titles independently of the specific analysis.
- The grid search setup function now uses the prefix argument to the print_model_title() API function. This is simply set to 'Grid search setup:'.
- The relaxation dispersion API now uses the MODEL_R2EFF variable for identifying the R2eff model.
- Changes to the minimise.grid_search user function frontend. The Boolean constraints argument has been shifted to the end, and empty lines have been removed.
- Epydoc docstring fixes for the keyword arguments of the pipe_control.minimise module.
- Shifted the constraints Boolean argument to the end of the grid_search() function argument list.
- Major change to the grid_search user function. The minimise.grid_search user function now accepts the skip_preset flag. When True, the grid search will skip any parameters with a preset value. This allows the user to set parameters via the value.set user function and then have these parameters skipped in the grid search. The new skip_preset argument is passed into the pipe_control.minimise.grid_setup() function in the backend. This then sets both the grid lower and upper bounds to the preset parameter value and sets the number of increments to 1 for that parameter so that it is essentially skipped in the grid search.
- Small change to the table printed out during the minimise.grid_search setup.
- Fix for the skipping of preset parameters in the grid search. Dictionary and list type parameters are now handled correctly.
- Converted the relaxation dispersion analysis to the new grid bounds and scaling factor design. The parameter object now registers the grid bounds and scaling factors for all of the dispersion parameters. This includes the functions dw_lower(), dwH_lower(), pA_lower() and i0_upper() in the specific_analyses.relax_disp.parameter_object module for calculating some of these values. The specific_analyses.relax_disp.parameters.assemble_scaling_matrix() function has been deleted as this is now provided by the upstream code in pipe_control.minimise. And the API methods grid_search() and minimise() has been modified to accept the list of scaling matrices. As the grid bounds and increments are now handled by the upstream pipe_control.minimise.grid_setup() function, the specific_analyses.relax_disp.optimisation.grid_search_setup() function was redundant and was deleted. The specific_analyses.relax_disp.parameters.get_param_names() function was also modified with the full argument added, to allow either the base parameter names or an augmented form with the dictionary key for presenting to the user to be returned. Importantly to allow the changes to be operational, the model_loop() API method was redesigned so that, for the R2eff base model, the individual spins rather than spin clusters will be looped over. This allows the specific_analyses.relax_disp.optimisation.minimise_r2eff() function to continue to operate correctly.
- Implemented the J(ω) mapping analysis get_param_names() API method. This simply returns the hardcoded list of 3 parameters of the model, and allows the minimise.calculate user function to operate.
- Updated the _print_model_title_spin() specific API common method. This now accepts the prefix argument and adds this to the title.
- The minimise.grid_search user function can now properly handle preset values of NaN. This occurs when the parameter vector contains values of None due to the parameter not being set and then the Python list being converted to a numpy array. The value of NaN is now caught and the parameter is no longer identified as being preset.
- Fixes for the relaxation curve-fitting grid search. The parameters which are not set are no longer defaulting to 0.0. This means that the parameter vector will sometimes contain NaN values, but this is important for the correct operation of the new minimise.grid_search user function backend.
- Updated the NOE analysis to handle the changes for the minimise.calculate user function. This now requires the model_loop() and get_param_names() API methods to be implemented. The first is provided by the API common _model_loop_spin() method and the second simply returns a list of the single 'noe' parameter.
- Created the _print_model_title_global() specific analysis API method. This is to be paired with the _model_loop_single_global() API method and it simply prints out the prefix as the title.
- Created the specific analysis parameter object _add_align_tensor() method. When called by a specific analysis, this will add the [Axx, Ayy, Axy, Axz, Ayz] parameters to the corresponding parameter object.
- Deleted the lib.optimisation module. The checks in the single test_grid_ops() function are implemented in the pipe_control.minimise.grid_setup() function and are now redundant.
- Removed the import of the now deleted lib.optimisation module from the model-free analysis.
- Converted the N-state model analysis to the new grid bounds and scaling factor design. The parameter object now registers the grid bounds and scaling factors for all of the N-state model parameters. The specific_analyses.n_state_model.parameters.assemble_scaling_matrix() function has been deleted as this is now provided by the upstream code in pipe_control.minimise. And the API methods grid_search() and minimise() has been modified to accept the list of scaling matrices. In addition, all of the lower bounds defined in the grid_search() API method have been deleted as this is now in the parameter object. The new API function print_model_title() has been aliased from _print_model_title_global(). And the get_param_names() and get_param_values() API methods have been implemented.
- The grid search upper and lower bound functions now must accept the incs argument. For a few analyses, the number of grid search increments are used to remove the end point of the grid, to remove duplicate points due to the circular nature of angles. Therefore the parameter object grid_lower() and grid_upper() methods now send the grid increment number for each parameter into all grid bound determining functions. The relaxation dispersion and curve-fitting analyses have been updated for the change.
- Converted the frame order analysis to the new grid bounds and scaling factor design. The parameter object now registers the grid bounds and scaling factors for all of the dispersion parameters. This includes the functions angle_upper_excluding_bound(), axis_alpha_upper(), cone_angle_lower(), cone_angle_upper(), pivot_grid_bound(), pivot_x_lower(), pivot_x_upper(), pivot_y_lower(), pivot_y_upper(), pivot_z_lower(), and pivot_z_upper() in the specific_analyses.frame_order.parameter_object module for calculating some of these values. The specific_analyses.frame_order.parameters.assemble_scaling_matrix() function has been deleted as this is now provided by the upstream code in pipe_control.minimise. And the API methods grid_search() and minimise() has been modified to accept the list of scaling matrices. As the grid bounds and increments are now handled by the upstream pipe_control.minimise.grid_setup() function, the setup and error checking code in the grid_search() API method was redundant and was deleted.
- Modified all calls to the parameter object _add() base class method. These are now all spread across multiple lines, with each argument on a separate line. This is for easier maintenance of the specific analysis parameters, as the code is now much cleaner and argument changes will only have diffs for that argument. It is also visually easier to see all the settings for each parameter.
- Fix for the grid search setup printout when parameters are preset.
- Changes to the diffusion tensor initialisation in the model-free auto-analysis. The values of the tensor are now initialised to None. This is to allow for the new grid search preset flag which defaults to True, setting the values to None indicates that a grid search should be performed.
- The diffusion_tensor.init user function can now set initial tensor parameter values of None. This is to allow for the new grid search preset flag. Therefore allowing the values to be None allows for a grid search to be performed by default.
- Created two new model-free system tests. These are Mf.test_m0_grid_with_grid_search and Mf.test_m0_grid_vs_m1_with_grid_search. Their aim is to better test the grid search in a model-free analysis when parameters are preset.
- Converted the model-free analysis to the new grid bounds and scaling factor design. The parameter object now registers the grid bounds and scaling factors for all of the model-free parameters. This includes the functions rex_scaling() and rex_upper() in the specific_analyses.model_free.parameter_object module for calculating some of these values. The base parameter object has also been updated as that is where the diffusion parameters are defined. Here the da_lower() and da_upper() have been defined to handle the different Da value constraints. The specific_analyses.model_free.parameters.assemble_scaling_matrix() function has been deleted as this is now provided by the upstream code in pipe_control.minimise. And the API methods grid_search() and minimise() has been modified to accept the list of scaling matrices. As the grid bounds and increments are now handled by the upstream pipe_control.minimise.grid_setup() function, the grid_search_config(), grid_search_diff_bounds() and grid_search_spin_bounds() functions in the specific_analyses.model_free.optimisation module were redundant and were deleted. The new API function print_model_title() has been implemented to handle the grid search setup printouts.
- Modified the pipe_control.minimise.grid_setup() function for when no parameters are present. For the current version of minfx to function correctly (1.0.8), the lower, upper and inc values should be set to [] rather than None.
- Fix for the lib.arg_check.is_num_or_num_tuple(). When the can_be_none flag is set to True, the tuple of None values is now considered valid. This enable the diffusion_tensor.init user function to accept the spheroid tensor values of (None, None, None, None), and the ellipsoid tensor values as a tuple of 6 None.
- Fix for the _prompt.test_diffusion_tensor.Test_diffusion_tensor.test_init_argfail_params unit test. As the diffusion tensor can now be initialised as None, the None value can be accepted and a different RelaxError is raised when the params argument is incorrectly supplied.
- Modified the behaviour of the parameter object units() method. If the unit is set to the default of None, this method will now return an empty string instead of None.
- The rx parameter of the relaxation curve-fitting analysis now has 'rad.s^-1' units defined.
- Implemented the zooming grid search. If the zoom level is set to any value other than 0, then the grid width will be divided by 2zoom_level and centred at the current parameter values. If the new grid is outside of the bounds of the original grid, the entire grid will be translated so that it lies entirely within the original.
- Modified the zooming grid search algorithm. If the zoom level is negative, hence the grid will be larger than the original, the checks that the grid is within the original are no longer active.
- Changed the minimise.grid_zoom user function. The zoom level can now be any floating point number or integer, including negative values. The user function docstring has been significantly expanded to explain the entire zooming grid search concept.
- Alphabetical ordering of the minimisation user functions in the user_functions.minimisation module.
- Large expansion of the minimise.grid_search user function documentation. The previous documentation was essentially non-existent.
- Expanded the minimise.grid_zoom user function documentation. A few sentences about the limitations of the algorithm have been added.
- Completed the Relax_fit.test_zooming_grid_search system test. Now only a single spin is optimised. The zooming levels increase in integer increments from 0 to 50 so that the final zoomed grid is insanely small (as the curve-fitting C modules are incredibly fast, this test is nevertheless relatively quick). The final zooming grid search parameter values are checked to see if they are the same as those optimised in the Relax_fit.test_curve_fitting_height system test to demonstrate the success of the algorithm.
- Modified the grid search upper bounds functions for the relaxation curve-fitting. This is for both the exponential relaxation curve-fitting analysis and the same fitting in the dispersion analysis. The intensity values are doubled and then rounded to the next order. This ensures that I0 and I∞ will be within the grid bounds. Hence the zooming grid search can be used for these curves.
- Expanded the documentation for the minimise.calculate user function. This now explains the dual operations of the user function.
- Fixes for some relaxation dispersion system tests not converted to the new optimisation user functions. Minimisation is now via the minimise.execute user function, which used to be the minimise user function.
- Added a 128x128 pixel version of the zoom-in Oxygen icon. This icon size is not available in the repository located at svn://anonsvn.kde.org/home/kde/trunk/kdesupport/oxygen-icons. Therefore the scalable/actions/small/48x48/zoom-in.svgz file was copied and then exported into a 128x128 PNG, and finally converted to a Gzipped EPS file for the relax manual.
- The frame order grid search bound functions can now handle increment values of None or 1. These cases are now caught and the full lower or upper bound is now returned.
- More even spacing for the frame order grid search. This is for the parameters which exclude end points in the grid search, as these excluded points do not decrease the number of increments searched over.
- Even more even spacing for the frame order grid search. This is for the parameters which exclude end points in the grid search, as these excluded points do not decrease the number of increments searched over. This fixes the algorithm for all of the bounds.
- Improved the logic for skipping parameters in the grid search. The logic is also fully explained in the user function documentation.
- Removal of all unused imports. These were identified using the devel_scripts/find_unused_imports.py script.
- Reverted the deletion of the Relax_disp.test_hansen_cpmg_data_to_lm63_3site system test which occurred in relax 3.2.3. See the thread at http://thread.gmane.org/gmane.science.nmr.relax.scm/21774/focus=6300 for the request that this deletion be reverted. This is the only system test for the LM63 3-site dispersion model using real data. Having this test allows for better coverage of the code.
- Updated the Relax_disp.test_hansen_cpmg_data_to_lm63_3site system test. This is for the changes to the optimisation user functions.
- Updated the checks in the Relax_disp.test_hansen_cpmg_data_to_lm63_3site system test. The values were incorrect due to a bug in relax and a non-optimal minfx setting (https://gna.org/bugs/?22210 and https://gna.org/bugs/?22211).
- Fix for a fatal bug for the prompt UI on MS Windows. The improvements in the tab completion support for the prompt UI on Mac OS X systems was fatal for certain Python readline modules on MS Windows, as readline.__doc__ can be None. This is now correctly handled.
- Decreased the precision the Relax_disp.test_hansen_cpmg_data_to_lm63_3site system test. This is to allow the test to pass on Mac OS X systems.
- Unit test fix for Mac OS X. This is for the test_ns_mmq_2site_korzhnev_2005_15n_dq_data_complex128 test of test_suite.unit_tests._lib._dispersion.test_matrix_exponential.Test_matrix_exponential. The tests no longer check for exact values, but use the assertAlmostEqual() calls instead.
- Deleted the ancient optimisation_testing.py development script, as this no longer works and is of no use.
- Implemented the pipe_control.mol_res_spin.format_info_full() function. This follows from http://thread.gmane.org/gmane.science.nmr.relax.scm/22522/focus=6534. This is a verbose representation of the spin information which can be used for presenting to the user. Functions for shorter string versions will also be of great use, for example as described by Troels at http://thread.gmane.org/gmane.science.nmr.relax.scm/22522/focus=6535.
- Created a unit test for the pipe_control.mol_res_spin.format_info_full() function. This comprehensive test covers all input argument combinations.
- Changed the behaviour of the pipe_control.structure.mass.pipe_centre_of_mass() function. This function returns the CoM and optionally the mass of the structural data loaded into the current data pipe. However it was matching the structural data to the molecule-residue-spin data structure and skipping spins that were deselected. This illogical deselection part has been eliminated, as spins can be deselected for various analysis purposes and this should not change the CoM. The deletion also significantly speeds up the function.
- Added Andy Baldwin's 2013 R1ρ relaxation dispersion model (BK13) to the manual. The model has been added to the table of dispersion models and to the dispersion software comparison table of the dispersion chapter of the manual. The citation has also been added to the bibliography.
- The BK13 dispersion model is now properly added to the software comparison table.
- Added the 'BK13' and 'BK13 full' dispersion models to the to do section of the manual.
- Standardisation of the author names in the bibliography of the relax manual.
- Added links for the BK13 model to https://gna.org/support/?3155 in the manual.
- Expansion of the 'to do' section of the dispersion chapter of the manual.
- Editing of the 'to do' section of the dispersion chapter of the manual.
- Split out the interpolating in specific_analyses.relax_disp.data.plot_disp_curves() into separate function. This is to prepare for a interpolating function for spin-lock offset rather than spin-lock field strength for R1ρ models. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Split out the looping over frequency and offset into its own function, in function of specific_analysis.relax_disp.data.plot_disp_curves(). Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Split out the writing of dispersion graph files in specific_analyses.relax_disp.data.plot_disp_curves(). This is to prepare for a stand-alone function to plot R1ρ graphs, interpolating θ through spin-lock offset rather than spin-lock field strength. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Fix for function calling and default values of None in sub-plotting functions. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Large extension of specific_analyses.relax_disp.data(), by adding several helper plotting functions. This is to prepare for plotting R1ρ/R2 as function of effective field in rotating frame: ωeff. R2 = R1ρ / sin2(θ) - R1 / tan2(θ) = (R1ρ - R1 * cos2(θ) ) / sin2(θ). Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Extended specific_analyses.relax_disp.optimisation.back_calc_r2eff() to handle interpolated spin-lock offset values. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Removed a wrong adding of empty offset dimension in the get_back_calc() function of target_functions.relax_disp(). Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added the back calculated R2 as function of effective field in rotating frame: ωeff. R1ρ/R2 is defined as: R2 = R1ρ / sin2(θ) - R1 / tan2(θ) = (R1ρ - R1 * cos2(θ) ) / sin2(θ). This is described more at: http://wiki.nmr-relax.com/DPL94#Equation_-_re-writed_forms. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added an intermediate attempt to show the back calculated data in the graph for R1ρ/R2 as function of the effective field in rotating frame: ωeff. The graph is aiming for the representation of Figure 2 in Kjaergaard et al 2013. (http://dx.doi.org/10.1021/bi4001062). The figure can be seen at https://gna.org/support/download.php?file_id=20208. It becomes clear, that it is not necessary interpolate through the spin-lock offset, but it is sufficient to interpolate through the spin-lock field strengths. The necessary step was the extraction of the effective field in rotating frame, ωeff. In earlier attempt is shown at: http://wiki.nmr-relax.com/File:Matplotlib_52_N_R1_rho_R2eff_w_eff.png This though show lines for 6 offset values. The question is how to show the single line of interpolation. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added NMR library function to convert the given frequency from rad/s to ppm units. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Hard-coded restriction of R1ρ extra plotting to model DPL94, TP02, TAP03, MP05, NS R1rho 2-site. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Fix for sending the correct data structures to target function, and fix for the spin index which is always zero in graph production. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Moved the file_name creation out of the interpolate function, to make it a general function for interpolating. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Made both interpolation functions of the spin-lock field strength and spin-lock offset return the offset data. This is make it possible to switch between the interpolating functions, when plotting R1ρ graphs. This is necessary to produce the R2 as function of effective field in rotating frame ωeff, and to produce R1ρ as function of θ, when ramping the spin-lock offset. These graphs can be seen at: http://wiki.nmr-relax.com/Matplotlib_DPL94_R1rho_R2eff. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Changed interpolation function from offset to spin lock field strength, to plot R1ρ/R2 as function of effective field. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Improved axis label for plotting R1ρ/R2 as function of effective field ωeff. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added sub-title to the plot of R1ρ/R2 as function of effective field. This is to add information about how the effective field has been interpolated. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added functionality to plot R1ρ/R2 as function of effective field ωeff, for the R2eff model. Also renamed a function, to better reflect is functionality. The hard-coding of which models to plot, has been removed. If the exp-type is R1ρ, then the plotting will commence. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added the spin specific residue name and spin_id to the title of the dispersion plots. This is handy, since it is often of interest to have this information at hand, when looking through many graphs. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Renamed and improved epydoc information for interpolating function for dispersion values. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Renamed the interpolating function for offset, and improved the epydoc information. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Corrected the epydoc information for the return_offset_data() function in specific_analyses.relax_disp.data. The function has been extended to return more data. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Renamed function to represent the functionality of returning data in correct xmgrace form. Also improved the epydoc information, for the return of values. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Renamed the other function to represent the functionality of returning data in correct xmgrace form. Also improved the epydoc information, for the return of values. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added function to calculate rotating frame parameters for lib/nmr.py. This function is called several times in specific_analyses/relax_disp/data.py by plotting functions. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Replaced repeated calculation of rotating frame parameters to use function in lib/nmr.py. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Skip production of plotting R1ρ/R2 as function of effective field ωeff, when spin.isotope is not present. This can happen when it is 'exp_fit' model curve fitting. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added functionality to function to accept how the first part of the filename is formed. This is to prepare to reuse the same plotting function. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Renamed plotting sub function, to accept different file name arguments, and X-axis arguments. This is to reuse the sub-plot function to plot against different X-axis. Added plot of R1ρ as function of θ, where interpolated against spin-lock field strength. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Prepared flag, to tell which data type to interpolate through. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Preparation to interpolate through the offset to plot R1ρ as function of θ, interpolated through spin-lock offset. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added graph functionality, to plot R1ρ as function of θ, when spin-lock offset is interpolated. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Ensured production of plotting R1ρ/R2 as function of effective field ωeff, when spin.isotope is not present. The offset in radians would be set to 0.0 instead. This can happen when it is 'exp_fit' model curve fitting. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added function to return spin info, and a function to return a spin string for graphs. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Replaced the spin info string in the title of graphs, with the new function method. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added keywords to be used to backend function of plot_disp_curves. The keyword 'y_axis', determine which y data to be plotted on this axis. The keyword 'x_axis', determine which x data to be plotted on this axis. The keyword 'extend_hz' to determine how far to extend interpolated CPMG frequency or spin-lock field strenght. The keyword 'extend_ppm' to determine how far to extend interpolated spin-lock offsets. The keyword 'interpolate' to determine to interpolate dispersion points, or offset. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Made the plotting function uniform into accepting both CPMG and R1ρ data. Also made a function to return data, depending if it is data, back calculated, interpolated or residual. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Renamed return grace data function, to a better shorter name. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Renamed the other return grace data function, to a better shorter name. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Hardcoded xmgrace colour_order, and made function to return data label, and data plot settings, depending on data type. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Renamed plotting function to represent the function of writing to file. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Removed unused plotting function. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Streamlined plotting functions, to have similar input. Reordered the output from return_offset_data(), interpolate_disp() and interpolate_offset(), to reflect the order of data type. Made the input to return_grace_data_vs_disp(), return_grace_data_vs_offset the same(). Added the interpolate flag to return_grace_data_vs_disp() and return_grace_data_vs_offset(), to help return correct X-value. Added the interpolate flag to return_x_y_point(), to help determine if "disp point" or "offset point" should be returned. Added the "offset point" to return_x_y_point() function, to make it possible to plot against offset. Cleaned up the return_grace_data_vs_offset() function, to use newly created return_x_y_labels() function. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Fix for output catching after reorder or return_offset_data() function. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Removed unused return_grace_data() function. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Made uniform function for returning x_axis and y_axis labels for xmgrace plotting. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Renamed return functions, to reflect they are specific for xmgrace plotting. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Extended relax_disp auto_analyses to plot special R1ρ graphs. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Modified front-end user function relax_disp.plot_disp_curves to send new arguments to back-end function. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added new Unicode symbols to be used by the GUI drop-down menu. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Modified back-end of plot_disp_curves() to reflect changes to the front-end function. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Extended system test Relax_disp.test_r1rho_kjaergaard_auto(), to check that the expected graphs exist. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added model No Rex to system test Relax_disp.test_r1rho_kjaergaard_auto(), to check all graphs are produced. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added function to return the initial part of the file name for grace plotting. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Modified system test to use the new function to return initial part of file name for grace plotting. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Started testing all possible combinations of graphs for R1ρ analysis. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added more printout, to detect which graphs are not working. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added forgotten "interpolate" type to function which return X,Y point to xmgrace graphs. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Fix for interpolation graph when plotting R1ρ/R2 as function of offset (ppm). Missed to extract the offset value from list. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Forcing overwrite of special R1ρ graphs in auto analyses in relax_disp. The other graphs are also auto forced. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added system test Relax_disp.test_r1rho_kjaergaard_auto_check_graphs, to check that the contents of all combinations of graphs are consistent. The system test actual show that the error is changing per run-through. This is a bug, which should be corrected. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added graphs to check against in system test test_r1rho_kjaergaard_auto_check_graphs. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Code validation of system test file for Relax_disp. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Fix to system test Relax_disp.test_r1rho_kjaergaard_auto_check_graphs by only comparing X,Y values, and skipping the error. This is a hack until the error difference bug gets corrected. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added system test Relax_disp.test_kteilum_fmpoulsen_makke_check_graphs() to check all possible combinations of dispersion plotting. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Fix for GUI text in MS Windows, since subscript 1 and Greek θ symbol is not working in this Unicode system. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Fix for desc_short, in user function relax_disp.plot_disp_curves. The text "The " is preformed in the formatting. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Fix for system test, after moving graphs to check against. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Moved graph files up one level in system test. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Fix for forgotten removal of counter. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added check function for relax_disp. This function check if interpolating against offset for non-R1ρ exp types, and will raise an Error. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added check function to plot_disp_curves, to check that CPMG exp types are not interpolated against offset, which is not implemented. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Fix for forgotten "1" in lib text GUI. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Improved description in GUI text for user function relax_disp.plot_disp_curves. The improved description now explains the new features. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Extended graph labelling, file naming and return of data for multiple CPMG graphs types. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added system test Relax_disp.test_kteilum_fmpoulsen_makke_check_graphs to check all CPMG graph combinations of: y_axis_types = [Y_AXIS_R2_EFF, Y_AXIS_R2_R1RHO]; x_axis_types = [X_AXIS_DISP, X_AXIS_THETA, X_AXIS_W_EFF]; interpolate_types = [INTERPOLATE_DISP]. This is a total of 6 graphs. The graphs will in most cases be totally equal, since the θ angle is calculated to 90 degrees, and R1 is returned as 0.0, then R2=(R1ρ - R1 cos2(θ)) / sin2(θ) = R1ρ = R2eff for CPMG models. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Added graphs to check against for system test: Relax_disp.test_kteilum_fmpoulsen_makke_check_graphs. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Expanded ex. to example in help text for function. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Fix for unit test, where return_offset() function return has been expanded and reordered. Sr #3124: Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Sr #3138: Interpolating θ through spin-lock offset Ω, rather than spin-lock field strength ω1.
- Created the Bruker.test_bug_22411_T1_read_fail system test. This is to catch bug #22411 as reported by Olena Dobrovolska.
- Fix for system test Relax_disp.test_kteilum_fmpoulsen_makke_check_graphs where minimise has been extended with execute.
- Changed graphs after new minimisation algorithm has been implemented. The values are now slightly different.
- Implemented first try to stride through data, when computing the eig() of higher dimensional data. System test test_cpmg_synthetic_b14_to_ns3d_cluster survived this transformation. The system test will go from about 11 seconds to 22 seconds.
- Implemented second try to stride through data, when computing the eig() of higher dimensional data. This of data of form: NS, NM, NO, ND, Row, Col. System test test_sprangers_data_to_ns_mmq_2site survived this transformation. The system test will go from about 2 seconds to 4 seconds.
- Created function to create the helper index numpy array, to help figuring out the indices to store in the exchange data matrix. This is for striding through data and store the data correct in the data matrix. This is for a special situation where numpy version is < 1.8, and where the numpy.linalg.eig() function can only be performed on square matrices, and not on higher dimensional data. For this situation, it is necessary to stride through the data.
- Created the numpy array self.index target function which contains index to store the data. This is for situations where numpy version is under 1.8.
- Added function to get the data view via striding through a higher dimensional column numpy array.
- Extracted the data view of the index indices numpy array in the target_function.
- A profiling showed, that it was not faster to preform the index view.
- Made new general stride helper function and matrix_exponential function.
- Changed to the matrix_exponential function for NS R1rho 2-site.
- Removed all unused helper functions, and matrix exponential functions. They are now condensed to the fewest possible functions.
- Fix for eye matrix being formed incorrectly.
- Replaced all matrix_exponential functions in numerical models to use the new general matrix_exponential function.
- Added warning message to auto analysis in relax disp, if numpy is below 1.8 and using numerical model. This will make the analysis 5-6 times slower.
- Fixes for numpy version under 1.8, when striding through data.
- Fix to unit tests, after changing the name of matrix_exponential function.
- Added graphs and results for run with MC=2000, for system test Relax_disp.test_r1rho_kjaergaard_auto(). This is to be able to extend graph testing for interpolated R1ρ graphs, and to add figures to the latex manual.
- Added list of R1ρ models, which use R1 in their equations. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models. Bug #21788: Only Warning is raised for missing loading R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Modified the warning and error messages being raised when calling return_r1_data(). Now warnings is raised if no R1 data is available. An error is raised if the R1ρ model is expected to have R1 data, and it is not available. That makes system test Relax_disp.test_r1rho_kjaergaard_missing_r1() fail, which is the expected behaviour. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models. Bug #21788: Only Warning is raised for missing loading R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added the model "MODEL_DPL94_FIT_R1", to the full list of models. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- In system test Relax_disp.test_r1rho_kjaergaard_missing_r1(), started using the new model MODEL_DPL94_FIT_R1. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added "r1_fit" as a parameter object. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added functionality to return r1_fit parameter in loop_parameters() function. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added model variable MODEL_DPL94_FIT_R1, to relax_disp target function. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Split the target function of model DPL94 into a func_DPL94 and calc_DPL94. This is to prepare for a target function func_DPL94_fit_r1. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added initial target function for model DPL94_fit_r1. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added list of R1ρ models, which can fit R1 in their equations. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Modified return_r1_data() function, to return numpy array of "None", if model is in list of "MODEL_LIST_R1RHO_FIT_R1". Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Modified target function func_DPL94_fit_r1(), to unpack fitted parameters correct. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added linear linear_constraints for parameter "r1_fit". Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added warning message when using function return_r1_data(), and model is in list MODEL_LIST_R1RHO_FIT_R1. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added model DPL94_FIT_R1 to the list of MODEL_LIST_R1RHO and MODEL_LIST_R1RHO_FULL. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Modified return_r1_data(), to be dependent on fitting model. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Made function return_r1_err_data() be dependent on model type. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Replaced instances of "['r2', 'r2a', 'r2b']" with variable PARAMS_R20. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Implemented model list, which uses parameter of inverted relax delay times. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Implemented model list, which uses parameter of R2B0. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Fix in target function for relax_disp, where model IT99 does not belong to model list with several chemical shift correlated parameters. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added new variable, for models which has parameters with mixed Δω, and has two variables. For example with both Δω and ΔωH or ΔωAB and ΔωBC or φexB and φexC. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added model MODEL_NS_R1RHO_3SITE, MODEL_NS_R1RHO_3SITE_LINEAR, to list of models who has who Δω parameters. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added new variable, for models which has parameters with mixed Δω, and has four variables Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added to relax_disp auto_analyses, that R1_fit should be plotted and written out. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added 2 new models, MODEL_NOREX_R1RHO and MODEL_NOREX_R1RHO_FIT_R1. The "NOREX" model is not covering R1ρ models. The target function for "NOREX" is calculated as: back_calc = R20. R20 is for R1ρ models equivalent to R1ρ prime (R1ρ'), which for example in the model of DPL94 would mean: R1ρ = R1ρ' But for the "NOREX" case, the return should be R1ρ = R1 * cos2(θ) + (R1ρ' + 0) * sin2(θ). This affects all off-resonance model calculations. These two target functions will be implemented. Bug #22440: The "NOREX" model is not covering R1ρ models. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Made the model MODEL_NOREX_R1RHO_FIT_R1, be tested in system test Relax_disp.test_r1rho_kjaergaard_missing_r1(). Bug #22440: The "NOREX" model is not covering R1ρ models. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added models MODEL_NOREX_R1RHO and MODEL_NOREX_R1RHO_FIT_R1 to MODEL_LIST_FULL. Bug #22440: The "NOREX" model is not covering R1ρ models. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Implemented target and calculation function for MODEL_NOREX_R1RHO, MODEL_NOREX_R1RHO_FIT_R1. Bug #22440: The "NOREX" model is not covering R1ρ models. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Made the model "MODEL_NOREX_R1RHO", be testes in system test Relax_disp.test_r1rho_kjaergaard_auto. This is for system test where R1 has been loaded from earlier results, which was not analysed in relax. Bug #22440: The "NOREX" model is not covering R1ρ models. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Made list of models which fit pA or pA and pB. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added function to auto_analysis, to test if it give meaning to write and plot out the parameter. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Made the writing out of parameter pC, be tested with the new function. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Implemented models list with φex, φexB, and φexC, and added to test in auto_analyses of relax_disp. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Made use of the dictionary MODEL_PARAMS, to determine if parameter is present. This makes the list of models belonging to parameter lists superfluous. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Removed unnecessary list of models which support a parameter. This functionality already exists with the dictionary MODEL_PARAMS. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Rearranged the writing out of parameters in auto_analysis of relax_disp. This is to prevent writing out all possible parameters in the final round, if any of those parameters have not been tested. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Extended the writing and checking of parameters, to use different file name, than the parameter name. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Moved the auto-analyses writing out of ωeff and θ into check for has_r1rho_exp_type(). Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Re-arranged all model variable lists, to be able to re-use earlier lists. This is to prevent user errors, when setting up the lists, and re-use the lists through all code. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Fix for MODEL_NOREX_R1RHO_FIT_R1 not being part of list: MODEL_LIST_DISP. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Moved the auto_analyses plot of special R1ρ graphs into the check of has_r1rho_exp_type(). Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Moved the auto-analyses plotting and writing of R2, r2a and r2b for CPMG models into test of has_cpmg_exp_type(). Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Replaced in auto analysis all instances of No Rex and R2eff with its equivalent defined variables. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Re-arranged plotting and writing in auto-analyses of relax disp, when model is R2eff. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Removed unused variables in auto-analyses of relax_disp. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Implemented the list "MODEL_LIST_NEST", which define which model are used for nesting. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Fix for the nested copying of R2, if using a nested list. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added the equivalent R1 fit models for: TP02, TAP03, MP05 and NS R1rho 2-site. The R1 fit models will no be implemented for 3-site models, because there will be to many variables. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added the new R1 fit models to system test Relax_disp.test_r1rho_kjaergaard_missing_r1(). Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Split target function of model TP02, into a calc and two func_TP02* variants. One target function will use measured R1 values, while one target function will use the fitted R1 values. They will use the same calculation function. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Fix for error checking covering R1ρ off resonance models in target function. This is for checking presence of chemical shifts and R1. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Split target function of model TAP03, into a calc and two func_TAP03* variants. One target function will use measured R1 values, while one target function will use the fitted R1 values. They will use the same calculation function. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Split target function of model MP05, into a calc and two func_MP05* variants. One target function will use measured R1 values, while one target function will use the fitted R1 values. They will use the same calculation function. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Fix for system test Relax_disp.test_r1rho_kjaergaard_auto_check_graphs(), where the special R1ρ graphs is no longer produced for the R2eff models. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Split target function of model ns_r1rho_2site, into a calc and two func_ns_r1rho_2site* variants. One target function will use measured R1 values, while one target function will use the fitted R1 values. They will use the same calculation function. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Removed num_points to be used in target and lib function of model ns_r1rho_2site. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added a variable describing the model year, for all relaxation dispersion models. This could be used, when trying to write up an intelligent detect+select nesting function. This function need some meta-data describing the models, in order to sort the self.models before calculations, and to select a proper nested model pipe. Other meta data could be: Accept of Exp_type, full or normal model for CPMG, fitted or loaded R1 for R1ρ, is analytic, silico or numeric type. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added initial unit test class for testing specific_analysis.relax_disp.variables. There will be more tests added, when a nesting selection function has been written here. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added dictionary for returning year, when using model as key. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added unit test for the dictionary of model years. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Reused the EXP_TYPE_LIST_CPMG and EXP_TYPE_LIST_R1RHO, to combine for the list EXP_TYPE_LIST, the list of all dispersion experiment types. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added a common EXP_TYPE_CPMG MMQ description for models which handle MMQ. This is part of adding meta data for each model, making it possible to device a sensible nesting selection function. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added meta data about EXP_TYPE per model, and made a dictionary for it. Added unit test for the new dictionary. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added three new EXP_TYPE variables: EXP_TYPE_R2EFF = 'R2eff/R1rho', EXP_TYPE_NOREX = 'No Rex', EXP_TYPE_NOREX_R1RHO = 'No Rex: R1rho off res'. These are used to add meta-data information to each model, making it possible to make a nesting function, determining which model to nest from. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added model meta information about number of chemical exchange sites. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added meta information about equation type. The models are divided into: analytic, silico or numeric. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Implemented nesting function, which will determine which model to nest from. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- In auto analysis of relax_disp, started implementing the new nesting function. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Modified nesting function to return all model info for the current model, and the comparable model. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Fix for nesting kex, when model is CR72, and analysed models is LM63. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Fix for nesting kex, when model is CR72, and analysed models is IT99. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added a return from the nesting model, if all fails. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Replaced the test, if acquiring the model info to a numerical model from a analytical model. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Improved the printing when nesting parameters from equivalent models. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Removed unused import of models in auto-analyses of relax_disp. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Improved the printing of system test Relax_disp.test_r1rho_kjaergaard_missing_r1. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Improved the printing of system test Relax_disp.test_r1rho_kjaergaard_missing_r1. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added function to sort models before auto-analyses. They are sorted in order: exp_type: EXP_TYPE_R2EFF, EXP_TYPE_NOREX, EXP_TYPE_NOREX_R1RHO, EXP_TYPE_CPMG_SQ, EXP_TYPE_CPMG_MMQ, EXP_TYPE_R1RHO; equation: EQ_SILICO, EQ_ANALYTIC, EQ_NUMERIC; Nr of chemical sites: 2 or 3; Year: Newest models first; Nr of parameters. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added unit test, to test the expected sorting of models for auto-analyses. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added more models to be tested in system test Relax_disp.test_r1rho_kjaergaard_auto. Bug #22461: NS R1rho 2-site_fit_r1 has extremely high χ2 value in system test Relax_disp.test_r1rho_kjaergaard_missing_r1. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Implemented the sorting of models, for auto-analyses. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Implemented partial reading of results file. Before reading a results file, it is determined if the file exists. This makes is possible to read a directory with partial results from a previous analysis. This can be handsome, if reading R2eff values in R1ρ experiments, and the error estimation has been prepared with a high number of Monte Carlo simulations. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added keyword to relax_disp auto analysis, if R2eff values should be optimised. Here optimisation means minimisation and Monte Carlo simulations of the error. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Modified system test Relax_disp.test_r1rho_kjaergaard_missing_r1 to load previous R2eff values, and not optimise them. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Fix in back end for relax_disp.parameter_copy, where r2a and r2b should be skipped, since it has already been copied. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Locked values in system test Relax_disp.test_r1rho_kjaergaard_missing_r1. This is possible after locking the R2eff values and errors from a previous run. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Removed MODEL_NS_CPMG_2SITE_EXPANDED to be analysed in system test test_hansen_cpmg_data_missing_auto_analysis. The new ordering of models, will make MODEL_NS_CPMG_2SITE_EXPANDED be analysed first, and results copied to model CR72. This will interfere with the old results. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Lowered the precision of Δω for model NS CPMG 2-site expanded, in system test est_hansen_cpmg_data_auto_analysis_numeric. Model NS CPMG 2-site expanded is now analysed before MODEL_CR72, which alter the values a bit. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added GUI text for parameter r1_fit. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added front-end description of the 6 new R1 fit R1ρ models for relax_disp.select_model. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added a paragraph for the no chemical exchange model in help text description for selecting models. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added the new R1ρ models where R1 is fitted, to the GUI model selection. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Deleted system test test_r1rho_kjaergaard_man, since it was no necessary. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Deleted unused script files in data folder for Kjaergaard_et_al_2013. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Fix for the linear constraints where parameter r1_fit was written as R1_fit. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Fix for the numbers of parameters not getting counted correct. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Triggering an error in test_r1rho_kjaergaard_missing_r1. There is a bug fetching the standard value of parameter 'r1_fit'. AttributeError: 'float' object has no attribute 'keys'. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Removed unused scripts in folder of Kjaergaard et al., 2013. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Added new analysis scripts in folder of Kjaergaard et al., 2013. Sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models.
- Removed triggering an error in test_r1rho_kjaergaard_missing_r1. There is a bug fetching the standard value of parameter 'r1_fit'.
- Fix for system test Relax_disp.test_r1rho_kjaergaard_missing_r1, running on 64 bit system.
- Inserted LaTeX bibliography for reference to linear constraints of the exchange rate.
- Equation fix for $kex$ in manual.
- Added system test Relax_disp.test_bug_22477_grace_write_k_AB_mixed_analysis and data. This is for bug #22477: Not possible to perform grace.write() on kAB parameter for mixed CPMG analysis.
- Added more printout to system test Relax_disp.test_bug_22477_grace_write_k_AB_mixed_analysis and data.
- Fix for system test Relax_disp.test_bug_22477_grace_write_k_AB_mixed_analysis. Bug #22477: Not possible to perform grace.write() on kAB parameter for mixed CPMG analysis.
- Set the default value of r1_fit to 5.0.
- Added the relax_disp pipe type to be setup for unit tests of value function.
- Setup a unit test for the value.set functionality for param r1_fit. Bug #22470: value.set does not work for parameter r1_fit.
- Fix in relax_disp API, how to handle the r1_fit parameter type. Bug #22470: value.set does not work for parameter r1_fit.
- Modified system test Relax_disp.test_r1rho_kjaergaard_missing_r1 to use GRID_INC=None, and thereby speeding up the analysis. Bug #22470: value.set does not work for parameter r1_fit.
- Added to system test a count of number of headers and values, when issuing a value.write(). Sr #3121: Support request for replacing space in header files for the value.write functions.
- Fix for replacing spaces " " with "_" in header files. Sr #3121: Support request for replacing space in header files for the value.write functions.
- Fix for comment, which mentions R2 parameter, when it relates to R1 fit.
- Replaced variable name: MODEL_PARAM_INV_RELAX_TIMES with MODEL_LIST_INV_RELAX_TIMES, to match all of the other MODEL_LIST_* variables. Also added a newline to end of file.
- Replaced remaining variable names: MODEL_PARAM_* with MODEL_LIST_*, to match all of the other MODEL_LIST_* variables.
- Renamed R1ρ off resonance models where R1 is fitted. This removes the "underscore". This is a better representation presented to the user, for example in the GUI model selection list or the relax_disp.select_model user function in all UI.
- Renamed the parameter "r1_fit" to "r1". This naming fits better to all other parameters.
- Split the unit test of specific_analyses.relax_disp.checks.get_times() into its own unit test file.
- Added a "check" function, what will determine if R1 data is missing for a model to analyse. Also added corresponding unit tests, to test the functionality.
- Modified in documentation, that the No Rex model have one chemical exchange site, namely itself.
- Copied variables.py to model.py. There should not exist any functions in variables.py. It should only consist of hardcoded variables, and the functions related to model sorting and nesting is split into its own file.
- Parted the file of variables.py into model.py.
- Removed the unit test regarding model.py in test_variables.py.
- Added unit tests regarding model.py and its functions.
- Removed the auto-sorting of models, when performing auto analysis of Relaxation dispersion. This was discussed in: http://thread.gmane.org/gmane.science.nmr.relax.scm/22733, http://thread.gmane.org/gmane.science.nmr.relax.scm/22734, http://thread.gmane.org/gmane.science.nmr.relax.scm/22737. Through this discussion, it has appeared that the order of how models are sorted for analysis, and hence the possibility for nesting, is a complicated case. The order of analysis should be possible to manually put into the auto analysis. This was not the scope of sr #3135: Optimisation of the R1 relaxation rate for the off-resonance R1ρ relaxation dispersion models to implement such a feature. Such a feature could be implemented for the next version of relax. It could be designed as function to "suggest" an order in the GUI. But this functionality would have to wait.
- Removing the tex->kex conversion, and φex from Δω and pA. This solution is not a proper implementation, but these parameters should rather be found by grid search.
- Re-inserted "MODEL_NS_CPMG_2SITE_EXPANDED" to be tested in system test test_hansen_cpmg_data_missing_auto_analysis.
- Removed special cases for nesting. Now following order is determined. First sort completed models into: EQ_NUMERIC, EQ_SILICO, EQ_ANALYTIC. Then into year, with newest first. Then number of chemical sites, which reflects number of parameters. Go through the completed models. If the experiment types are the same, then look for: If a completed model has same parameters, then nest from this. If a completed model has all other parameters than R20 parameters, then nest from this. Special cases are taken care of by: MODEL_LM63_3SITE from MODEL_LM63, MODEL_NS_MMQ_3SITE, MODEL_NS_MMQ_3SITE_LINEAR from MODEL_NS_MMQ_2SITE, MODEL_NS_R1RHO_3SITE, MODEL_NS_R1RHO_3SITE_LINEAR from MODEL_NS_R1RHO_2SITE, MODEL_MMQ_CR72 from MODEL_CR72. This functionality represents the hard-coding from previous implementation.
- Moved the nesting lists down in variables file.
- Small verb tense fix for the descriptions of the '* R1 fit' relaxation dispersion models.
- Added definition and dictionary, for each model, to determine which model they nest from. This is better to hardcode, since it makes it possible to produce a table with an overview, and accurately determine which model is nested from. This is discussed in thread http://thread.gmane.org/gmane.science.nmr.relax.devel/6684.
- Moved the lookup in dictionaries for model information, into the class of model info.
- Division of unit tests of specific_analyses/relax_disp/model.py into different functions. Also added more print information to each tests.
- Added the ordered list of nest models to the class of model information.
- Modified the defined list of nesting, according to thread: http://thread.gmane.org/gmane.science.nmr.relax.devel/6684. More specific, thread: http://thread.gmane.org/gmane.science.nmr.relax.devel/6694.
- Modified unit test regarding finding correct nested model. This was discussed in: http://thread.gmane.org/gmane.science.nmr.relax.devel/6684. More specific, thread: http://thread.gmane.org/gmane.science.nmr.relax.devel/6694.
- Modified nesting function, to pull list of possible models from dictionary, and check if these models are available in the completed models.
- Added initial Python script, to help print each model and its corresponding nested models. It can be executed by: relax test_suite/shared_data/dispersion/print_model_info/print_model_info.py.
- Added a relaxation dispersion example to show how certain literature statements are just utter crap. This follows from http://thread.gmane.org/gmane.science.nmr.relax.scm/22774/focus=6693, and the change http://thread.gmane.org/gmane.science.nmr.relax.scm/22774 which implement such dangerous literature conjectures. To see how a real minimum is excluded from the optimisation space, here for residue :2, execute the R1rho_analysis.py script in relax. This is synthetic data generated with kex = 1e5 assuming the model TP02. For the case of residue :2, this still produces an optimisable minimum in the space and dispersion curves. However the change blocks optimisation to the minimum.
- Added a function to determine how to nest/copy the parameters, when nesting from another model. It takes the list of parameters from the current model, and the list of parameters available in the nested model, and return a dictionary of parameter conversion for the current model params.
- Added unit test for the new function which determine how parameters are copied for a nested model parameters.
- Added a table for dispersion model nesting in the auto-analysis to the manual. This adds the ideas discussed in the thread http://thread.gmane.org/gmane.science.nmr.relax.devel/6684.
- Added the string 'me' for Methods in Enzymology to the bibtex file for the manual.
- Set the average value of R1 to 2.0 instead of 5.0. This is "normally" a better guess for R1.
- Implemented the function, which translates how parameters are copied from a nested model in the auto_analyses for relax_disp. This makes it possible to test the translating code, and makes logic clearer in the auto_analyses.
- Modified the r1rho_off_res_tp02_high_kex dispersion test data. The kex value is now set to 2e5.
- Removed the 'DPL94 R1 fit' model nesting from the table in the dispersion chapter of the manual. This was identified using the dispersion test suite data script print_model_info/print_model_info.py (http://thread.gmane.org/gmane.science.nmr.relax.scm/22823).
- Added to system test Relax_disp.test_r1rho_kjaergaard_missing_r1 to check, that values are not None when writing .out files. This is related to: sr #3121: Support request for replacing space in header files for the value.write functions. The fix for this bug, destroyed getting the values.
- Fix for earlier bug fix destroyed functionality. Altering the data-keys to early, meant that data was not fetched correctly. This is related to: sr #3121: Support request for replacing space in header files for the value.write functions.
- Moved the unit test of specific_analyses.relax_disp.checks.check_missing_r1() from a unit test to a system test. This is because the unit test involved several functions of relax.
- Inserted dictionary, that will convert a R1ρ off-resonance without R1, to the corresponding model which fit R1.
- Inserted to the check of missing R1, that MODEL_NOREX_R1RHO also depends on R1.
- Implemented function that determine if any model in the list of all models should be replaced or inserted as the correct No Rex model. It also translate the R1ρ off-resonance model to the corresponding 'R1 fit' models, if R1 is not loaded.
- Inserted system test Relax_disp.test_convert_no_rex_fit_r1, which test the return for the function that will determine if models self.models in the relax_disp should be translated/corrected.
- Fix for unit test, where the standard value of R1 was lowered from 5.0 to 2.0. Also fixed an import error in another unit test.
- Minimised the dependencies of the version module. This no longer relies on the dep_check module.
- Inserted return of True/False flags from function which convert models. The flag tells if: flag if No Rex model for R1ρ off-resonance was translated; flag if No Rex model for R1ρ off-resonance was inserted; flag if R1ρ off-resonance was translated to 'R1 fit' models if no R1 data was found.
- Changes to system test, after the number of returns from function has been altered.
- Inserted into relax_disp auto_analyses, to convert the input models. This will convert/insert the correct No Rex to the corresponding No Rex model for R1ρ off-resonance models. It will also translate to the corresponding 'R1 fit' model, if no 'R1 data' has been loaded with relax_data.read() function.
- Lowering of precision in system test Relax_disp.test_r1rho_kjaergaard_missing_r1(). This is due to 64/32-bit issues, between analysing on Linux computer, and testing on Mac computer.
- Made the GUI selection of models for relaxation dispersion more simple. After the implementation of a function which will translate the models, the No Rex model will be converted to the No Rex model for R1ρ off-resonance. Also the corresponding 'R1 fit' model will be chosen instead, if R1 data has not been loaded. This makes the model selection easier in the GUI interface.
- Bugfix for Relax_disp.test_bug_21715_clustered_indexerror, where only R2eff, No Rex is analysed. This special case was not tested in the translating function.
- Shortening the text in the auto_analysis, and raises a warning if R1 data has not been loaded.
- Rewrote the logic of the key-word 'optimise_r2eff' in the auto-analyses of relax disp. If R2eff result file exist in the 'pre_run_dir', this is loaded. If the results contain both values, and errors, then no optimisation is performed on the R2eff model. Unless the 'optimise_r2eff' flag is raised, which is not standard.
- Fixes for the Relax_disp.test_hansen_cpmg_data_missing_auto_analysis system test on MS Windows. This is for 32-bit MS Windows systems where the parameter checks need to be loosened.
- Fixes for the Relax_disp.test_r1rho_kjaergaard_missing_r1 system test on MS Windows. This is for 32-bit MS Windows systems where the parameter checks need to be loosened.
- Created the specific_analyses.relax_disp.data.is_r1_optimsed() function. This follows from an idea for handling R1 optimisation in the tread at http://thread.gmane.org/gmane.science.nmr.relax.scm/22850/focus=6736. This relaxation dispersion function can be used anywhere that requires the knowledge that R1 values should be fitted during optimisation or if loaded values should be used.
- Implemented the very basic relax_disp.r1_fit user function. This is as discussed at http://thread.gmane.org/gmane.science.nmr.relax.scm/22850/focus=6737.
- Implemented the specific_analyses.relax_disp.parameters.r1_setup() function. This matches the description at http://thread.gmane.org/gmane.science.nmr.relax.scm/22850/focus=6739 and http://thread.gmane.org/gmane.science.nmr.relax.scm/22850/focus=6736.
- Spelling fix for the is_r1_optimised() function name.
- Implemented to the back_end of the value.copy, a "force" flag to overwrite destination value.
- Implemented to the front_end of the value.copy, a "force" flag to overwrite destination value.
- Copying the R2eff value from the reading of R2eff results in the auto-analyses of relax_disp.
- Fix for the misspelled is_r1_optimised() function.
- The r1_fit flag is stored in the Disp_minimise_command class and passed into the target function. This matches the details at http://thread.gmane.org/gmane.science.nmr.relax.scm/22850/focus=6736. The specific_analyses.relax_disp.optimisation.Disp_minimise_command class calls is_r1_optimised() and stores the result. This is then passed into the relaxation dispersion target function class.
- Modified that NS CPMG 2-site expanded will be preferred before NS CPMG 2-site 3D and NS CPMG 2-site star.
- Modified the nesting for NS MMQ 3-site linear. NS MMQ 3-site linear should be able to nest from NS MMQ 3-site.
- Fix to unit test, after MODEL_NS_CPMG_2SITE_EXPANDED has been preferred over other numerical CPMG models.
- Modified to unit test, that when model: MODEL_PARAMS_NS_R1RHO_3SITE nest from: MODEL_PARAMS_NS_R1RHO_2SITE the conversion should be: 'r2', 'r2' 'pA', 'pA' 'dw_AB', 'dw' 'kex_AB', 'kex' 'pB', '1 - pA' 'dw_BC', 'dw' 'kex_BC', 'kex' 'kex_AC', 'kex'. Here '1 - pA' is a special conversion flag.
- Implemented the special flag '1 - pA', when nesting parameters from models with fewer chemical sites.
- Implemented the nesting of parameters from a model with fewer chemical sites when nesting for NS R1rho 3-site.
- Inserted system test Relax_disp.test_model_nesting_and_param() which will go through all models, and then through all it nested models, testing that all parameters have a conversion.
- Modified system test Relax_disp.test_model_nesting_and_param() to only print, when the converted parameter is different from the original parameter.
- Fix for parameter conversion when model is: MODEL_PARAMS_NS_R1RHO_3SITE or MODEL_PARAMS_NS_R1RHO_3SITE_LINEAR.
- Fix for parameter conversion for: MODEL_PARAMS_NS_MMQ_3SITE and MODEL_PARAMS_NS_MMQ_3SITE_LINEAR
- Fixes to unit tests, after parameter conversion have been corrected.
- Replaced that folder names for writing out results should be with replaced with underscores "_". This is for the dispersion auto-analysis.
- Fixes for the relaxation dispersion loop_parameters() function. The R1, R20, R2A0, R2B0 (and R1rho_prime, R1rho_primeA, R1rho_primeB) parameters are now checked for in each spin container rather than just the first of the cluster. This should make no difference as all spins should have the same model and parameters, but it might be a source of bugs in the future.
- The r1_fit flag is now used to switch between dispersion target functions. This is as described in http://thread.gmane.org/gmane.science.nmr.relax.scm/22850/focus=6736. The change makes the '* R1 fit' models now redundant.
- Removed all of the '* R1 fit' models out of the relax_disp.select_model user function frontend. These models are now redundant as the question of R1 fitting is now determined internally in relax.
- Removed all of the MODEL_*_FIT_R1 dependencies from the specific_analyses.relax_disp package. These models are now redundant as the question of R1 fitting is now determined internally in relax.
- Fix for the specific_analyses.relax_disp.data.is_r1_optimised() function for on-resonance R1ρ data. This function needs to specifically catch these models.
- Fix for the MODEL_LIST_R1RHO variable. Recent changes causes this to not include the on-resonance R1ρ dispersion models.
- Import fix for the Relax_disp.test_model_nesting_and_param system test. Somehow the import of the convert_no_rex() function was lost.
- Modified the MODEL_LIST_R1RHO_OFF_RES list to include MODEL_NOREX_R1RHO.
- The specific_analyses.relax_disp.parameters.r1_setup() function is now being called. This happens before the R1 data is returned in the Disp_minimise_command class.
- The dispersion auto-analysis now handles the optional R1 parameter correctly. The value.set user function was no longer setting the R1 parameter to the default value when the grid search was deactivated, as it is no longer in MODEL_PARAMS. So instead the new is_r1_optimised() function is being used to decide if the value.set user function should set the 'r1' parameter value.
- The dispersion loop_parameter() function now calls r1_setup() to handle R1 parameters correctly. This allows the R1 parameter to be removed or added to the parameter list prior to looping over the parameters of the model. The change is required to allow for the dynamic handling of R1 parameters.
- The dispersion back_calc_r2eff() function can now handle the dynamic R1 parameter. This required a call to r1_setup() to add or remove the parameter, and is_r1_optimised() to obtain the r1_fit flag to be sent into the target function class.
- Updated the specific_analyses.relax_disp.model.Model_class class to handle the dynamic R1 parameter. The class variable self.params now has the 'r1' parameter prepended to the list if is_r1_optimised() returns True.
- More changes for specific_analyses.relax_disp.model.Model_class for the dynamic R1 parameter. The 'r1' parameter is only prepended to self.params if it is not already in the list.
- Created the MODEL_LIST_FIT_R1 variable to keep track of dispersion models with R1 fitting support.
- The is_r1_optimised() function now checks MODEL_LIST_FIT_R1. If the model is not in MODEL_LIST_FIT_R1, i.e. R1 optimisation is not supported, then the function will return False.
- Fix for the test_nesting_param_5 unit test. The 'r1' parameter is now dynamic and hence will not be present in the initial list.
- One final fix for the Model_class.params list with 'r1'. The is_r1_optimised() function is now called with the model name argument, as required.
- Updated the relax_disp.r1_fit user function docstring. This now includes information about which models support R1 parameter optimisation.
- Removed results files to allow the Relax_disp.test_r1rho_kjaergaard_missing_r1 system test to pass. These are the test_suite/shared_data/dispersion/Kjaergaard_et_al_2013/check_graphs/mc_2000/ results files for the No Rex and DPL94 models, as well as the final run. This commit is to allow the test to temporarily pass. It can be reverted once a better solution is discussed and decided upon.
- Altered the number of Monte Carlo simulations in test script to 2000.
- Merger of the No Rex and 'No Rex R1rho off res' models in the specific_analyses.relax_disp package. In the 'variables' module, all *_NOREX_R1RHO variables have simply been deleted and the MODEL_LIST_* structures updated. For the 'data' module, the is_r1_optimised() function was modified to catch the No Rex model and to then use the cdp.exp_type_list structure to determine if the experiment type is EXP_TYPE_R1RHO. This will be modified in the future by using a function for determining if the current experiment is on or off-resonance. The return_r1_data() and return_r1_err_data() functions have also been modified to check if R1 values are fit rather than if the model is in MODEL_LIST_R1RHO_OFF_RES. In the 'model' module, in addition to deleting all *_NOREX_R1RHO variables, the convert_no_rex() function has also been deleted as it no longer serves a purpose. In the 'checks' module, all 'No Rex R1rho off res' model references have been replaced with No Rex.
- Updated the dispersion auto-analysis for the universal No Rex model. The 'No Rex R1rho off res' references have all been deleted. The model conversion logic is also no longer needed and has been deleted.
- Converted the relaxation dispersion GUI interface to the unified No Rex model. All of the MODEL_NOREX_R1RHO references have simply been deleted.
- Converted the relaxation dispersion target function class to the unified No Rex model design. On top of removing all references to MODEL_NOREX_R1RHO, the aliasing of self.func now checks the experiment type list to determine which target function to use. This is not an ideal solution and will not handle mixed CPMG and R1ρ experiment, however neither will the target functions yet. The creation of the off-resonance data structures has also been modified so that they are now R1ρ independent. This allows the structures to be properly created while at the same time enabling this code to be compatible with off-resonance CPMG data in the future.
- Removed the 'No Rex R1rho off res' model from the relax_disp.select_model user function frontend.
- Removed all references to the 'No Rex R1rho off res' model in the system tests. In addition, the Relax_disp.test_convert_no_rex system test has been deleted as it no longer has a purpose. For the Relax_disp.test_model_nesting_and_param system test, to allow this to work the cdp.exp_type_list list is set to EXP_TYPE_LIST.
- Removed all references to the 'No Rex R1rho off res' model in the unit tests.
- Updated the No Rex dispersion model description in the relax manual. The universal nature of the model is now described, including the addition of the off-resonance CPMG and R1ρ equations for the absence of chemical exchange. The R1 parameter optimisation is also shortly covered.
- Added a subsection to the dispersion chapter of the manual about R1 parameter optimisation.
- Added the R1 parameter fitting GUI element to the dispersion GUI tab. This is a simple Boolean toggle element that allows the R1 optimisation to be turned on. The value is passed into the auto-analysis.
- Added the r1_fit argument to the relaxation dispersion auto-analysis. When this is True, the relax_disp.r1_fit user function will be called to turn R1 parameter fitting on.
- Added the relax_disp.spin_lock_offset user function to the dispersion GUI. This has been added to the pop up menu in the spectrum list GUI element, when the relax_disp_flag has been set. It simply mimics the relax_disp.spin_lock_field functionality already present. This follows from Task #7820.
- Fix for the relax_disp.spin_lock_offset user function in the dispersion GUI tab. This is in the spectrum list element popup menu.
- Added the offset column to the spectrum list GUI element for the dispersion analysis. This is to complete Task #7820. The spectrum list GUI element add_offset() method has been added to insert the offset column when the relax_disp_flag is set. This is called by the update_data() method to fill and update the GUI element.
- Implemented the GUI test Relax_disp.test_bug_22501_close_all_analyse to catch bug #22501, 'Close all analyses' raises error.
- Inserted intermediate system test, to profile R2eff calculation for R1ρ. System test is: Relax_disp.test_bug_9999_slow_r1rho_r2eff_error_with_mc. This system test actually fails, if one tries to do a grid search. This is related to the R2eff values stored as dictionary, and pipe_control.minimise.grid_setup() will fail. The function 'isNaN(values[i])' cannot handle dictionary.
- Modified intermediate system test Relax_disp.test_bug_9999_slow_r1rho_r2eff_error_with_mc to see if the initial grid search for I0 and R2eff estimation can be skipped. This is done by converting the exponential curve, to a linear curve, and calculate the best parameters by a line of best fit by least squares. This seems like a promising method as an initial estimator of I0 and R2eff. For 500 to 2000 Monte Carlo simulations, this could have an influence on the timings, as all grid searchs could be skipped.
- Modified system test test_bug_9999_slow_r1rho_r2eff_error_with_mc to save data arrays. This is to prepare a profiling script.
- Added start script with basic data for profiling the relax curve fit.
- Created the Structure.test_create_diff_tensor_pdb system test. This is to show the failure of the structure.create_diff_tensor_pdb user function when no structural data is present.
- Created the Structure.test_create_diff_tensor_pdb2 system test. This is to catch another situation leading to bug #22505, the failure of the structure.create_diff_tensor_pdb user function when no structural data is present.
- Added an optimisation script for the test_suite/shared_data/diffusion_tensor/ellipsoid relaxation data. This is to help catch bug #22502, the geometric prolate diffusion representation does not align with axis in PDB, as reported by Martin Ballaschk. The PDB files of the optimised tensor demonstrate exactly the same problem as seen in the files attached to the bug report. The oblate and spherical diffusion tensor representations match that of the ellipsoid. But the prolate axis and tensor orientation are both different from the ellipsoid as well as themselves.
- Updated the diffusion tensor PDB representation files. This replaces the broken prolate representation with the corrected representation.
- Deleted the duplicated Structure.test_create_diff_tensor_pdb system test.
- Created a number of system tests to check the diffusion tensor PDB representation. This is to prevent bugs such as #22502 from ever reappearing. The PDB file contents are hardcoded into the tests and checked. The tests include Structure.test_create_diff_tensor_pdb_ellipsoid, Structure.test_create_diff_tensor_pdb_oblate, Structure.test_create_diff_tensor_pdb_prolate, and Structure.test_create_diff_tensor_pdb_sphere.
- Improved data checking for all of the Structure system tests. Before looping over the structural data, the number of lines in the real file and the newly generated file are compared. This avoids the situation whereby an empty file is produced, accidentally allowing the test to pass.
- Modified following functions (time points are now saved at the [ei][mi][oi][di] index level, at this index level all time points are saved for the R2eff point): interpolate_disp(), to interpolate time points, all time points through the original dispersion points di, are collected and then made unique - this time list can potentially be the largest of all time lists; interpolate_offset(), to interpolate time points, all time points through the original offset points, and then dispersion points di, are collected and then made unique - this time list can potentially be the largest of all time lists; plot_disp_curves_to_file(), to acquire the original relax_times points; return_r2eff_arrays(), to save all time points on the level of [ei][mi][oi][di]. At this index level, it will be a numpy array list with all time values used for fitting. Bug #22461: NS R1rho 2-site_fit_r1 has extremely high χ2 value in system test Relax_disp.test_r1rho_kjaergaard_missing_r1.
- Modified back_calc_r2eff() to accept interpolated time points. Bug #22461: NS R1rho 2-site_fit_r1 has extremely high χ2 value in system test Relax_disp.test_r1rho_kjaergaard_missing_r1.
- Modified target function of relax dispersion, to use the new list of time points, which are of higher dimension. Bug #22461: NS R1rho 2-site_fit_r1 has extremely high χ2 value in system test Relax_disp.test_r1rho_kjaergaard_missing_r1.
- Fix to system test Relax_disp.test_r1rho_kjaergaard_missing_r1(). After the relaxation times have been fixed, this model now return reasonable χ2 values. The reported parameters are though quite different from all other models, and it seems something may still be wrong. Bug #22461: NS R1rho 2-site_fit_r1 has extremely high χ2 value in system test Relax_disp.test_r1rho_kjaergaard_missing_r1.
- Fix for system test Relax_disp.test_exp_fit(), where the spin.isotope was not set. The new call to return_r2eff_arrays(), when producing graphs, raise RelaxSpinTypeError() if no isotope is set. Bug #22461: NS R1rho 2-site_fit_r1 has extremely high χ2 value in system test Relax_disp.test_r1rho_kjaergaard_missing_r1.
- Modified the Relax_disp.test_r1rho_kjaergaard_missing_r1 system test to pass on 64-bit Linux systems. The accuracy of the checks of the optimised values have been decreased.
- Moved the storing of relax time up before check of missing data in return_r2eff_arrays(). Bug #22461: NS R1rho 2-site_fit_r1 has extremely high χ2 value in system test Relax_disp.test_r1rho_kjaergaard_missing_r1.
- Fix for system test not adding spin.isotope to setup information. Bug #22461: NS R1rho 2-site_fit_r1 has extremely high χ2 value in system test Relax_disp.test_r1rho_kjaergaard_missing_r1.
- Fix for looping over data indices, where tilt_angles has the si index. Bug #22461: NS R1rho 2-site_fit_r1 has extremely high χ2 value in system test Relax_disp.test_r1rho_kjaergaard_missing_r1.
- Added Nikolai's original Matlab code to the lib.dispersion.ns_r1rho_2site module docstring. This is the code taken directly form the original funNumrho.m file, which was the origin of the code in this module.
- Further extended the profiling script for curve fitting. Now profiling is in place for the implemented C code method in relax. A similar code should now be devised for numpy array for comparing. But this profiling shows that when contraints=True, is slowing down this procedure by a factor 10 X.
- Further improved the profiling of relax curve fit. This profiling shows, that Python code is about twice as slow as the C code implemented. But it also shows that optimising with scipy.optimize.leastsq is 20 X faster. It also gives reasonable error values. Combining a function for a linear fit to guess the initial values, together with scipy optimise, will be an extreme time win for estimating R2eff values fast. A further test would be to use relax Monte Carlo simulations for say 1000-2000 iterations, and compare to the errors extracted from estimated covariance.
- Added verification script, that shows that using scipy.optimize.leastsq reaches the exact same parameters as minfx for exponential curve fitting. The profiling shows that scipy.optimize.leastsq is 10X as fast as using minfx (with no linear constraints). scipy.optimize.leastsq is a wrapper around wrapper around MINPACK's lmdif and lmder algorithms. MINPACK is a FORTRAN90 library which solves systems of nonlinear equations, or carries out the least squares minimization of the residual of a set of linear or nonlinear equations. The verification script also shows, that a very heavy and time consuming Monte Carlo simulation of 2000 steps, reaches the same errors as the errors reported by scipy.optimize.leastsq. The return from scipy.optimize.leastsq, gives the estimated covariance. Taking the square root of the covariance corresponds with 2X error reported by minfx. This could be an extremely time saving step, when performing model fitting in R1ρ, where the errors of the R2eff values, are estimated by Monte Carlo simulations. The following setup illustrates the problem. This was analysed on a MacBook Pro, 13-inch, Late 2011 with no multi-core setup. Script running is: test_suite/shared_data/dispersion/Kjaergaard_et_al_2013/2_pre_run_r2eff.py. This script analyses just the R2eff values for 15 residues. It estimates the errors of R2eff based on 2000 Monte Carlo simulations. For each residues, there is 14 exponential graphs. The script was broken after 35 simulations. This was measured to 20 minutes. So 500 simulations would take about 4.8 Hours. The R2eff values and errors can by scipy.optimize.leastsq can instead be calculated in: 15 residues * 0.02 seconds = 0.3 seconds.
- Moved the target function for minimisation of exponential fit into the target functions folder. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Implemented initial system test Relax_disp.test_estimate_r2eff for setting up the new user function to estimate R2eff and errors by scipy. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added front end user function relax_disp.r2eff_estimate to estimate R2eff and errors by exponential curve fitting in scipy.optimize.leastsq. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Modified check for model, to accept model as input, for error printing. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Implemented back end for estimating R2eff and errors by exponential curve fitting with scipy.optimize.leastsq. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Documentation fix for new exponential target function. Also added new function to estimate R2eff and I0 parameters, before minimisation. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Small changes to verification scripts, to use χ2 function and use the scaling matrix correct. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Split up of system test test_r1rho_kjaergaard_missing_r1, into a verification part. This is to test the new R2eff estimation, which should get the parameter values, as a this 2000 Monto Carlo simulation. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Modified system test Relax_disp.test_estimate_r2eff. This is to compare against errors simulated with 2000 MC. The parameters are comparable, but not equal. Mostly, it seems that the errors from scipy.optimize.leastsq, are twice as high than the Monte Carlo simulations. This affect model fitting, and the calculated χ2 value.
- Added system test Relax_disp.test_estimate_r2eff_error(). This is to get insight in the error difference between 2000 Monto Carlo simulations and then scipy.optimize.leastsq.
- Add dependency check for scipy.optimize.leastsq. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Lowering precision in system test Relax_disp.test_r1rho_kjaergaard_missing_r1. This is R1 estimation with MODEL_NS_R1RHO_2SITE. The lowering of precision is due different system precision.
- Reused the dependency check "scipy_module", since leastsq() has been part of Scipy since 2003.
- Moved target function for curve fitting with scipy into specific_analyses.relax_disp.estimate_r2eff. This will later include the backend specific_analyses.relax_disp.optimisation.estimate_r2eff() function and the code in the target_functions package. The code in target_functions.relax_disp_curve_fit is a lot more than just a target function, so it doesn't really belong in this package. This is also to isolate this experimental feature.
- Isolated all code related to user function relax_disp.r2eff_estimate into independent module file. All has been isolated to: specific_analyses.relax_disp.estimate_r2eff.
- Split function to minimise with scipy.optimize.leastsq out in estimate_r2eff module. This is to prepare for implementing with minfx.
- Implemented first try to minimise with minfx in estimate_r2eff() function. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Implementation of the target_functions.relax_fit.jacobian() function. This follows from the discussions at http://thread.gmane.org/gmane.science.nmr.relax.devel/6807. The function will calculate the Jacobian matrix for the exponential curve-fitting module. The Jacobian can be used to directly calculate the covariance matrix, for example as described at https://www.gnu.org/software/gsl/manual/html_node/Computing-the-covariance-matrix-of-best-fit-parameters.html. The Jacobian is calculated using the help of the new exponential_dI() and exponential_dR() functions in the target_functions/exponential.c file. These calculate the partial derivatives of the exponential curve with respect to each model parameter separately. The implementation still needs testing and debugging.
- Fixes for the new target_functions.relax_fit.jacobian() function. The Python list of lists is now correctly created and returned.
- Turned off the optimisation constraints for the R2eff model in the dispersion auto-analysis. This follows from http://thread.gmane.org/gmane.science.nmr.relax.scm/22977/focus=6829. This model does not require constraints at all, and the constraints only cause the optimisation to take 10x longer to complete. Therefore the constraint flag has been set to False for the model.
- Initial try to form the Jacobian and Hessian matrix for exponential decay. This can be tried with system test: relax -s Relax_disp.test_estimate_r2eff_error. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Intermediate step in estimate R2eff module. It seems that minfx is minimising in a quadratic space because of the power of χ2, while the general input to scipy.optimize does not do this. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Cleaned up target function for leastsq, since arguments to function can be extracted from class. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Tried to implement with scipy.optimize.fmin_ncg and scipy.optimize.fmin_cg, but cannot get it to work. The matrices are not aligned well. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Implemented the chi-squared gradient as a C module for the target functions. This simply translates the Python code into C to allow any target function C modules to build its own gradient function.
- Implemented the target_functions.relax_fit.dfunc() gradient function. This is using the Python/C interface to provide a Python function for calculating and returned the chi-squared gradient for the exponential curves.
- Implementation of the specific_analyses.relax_fit.optimisation.dfunc_wrapper() function. This interfaces with the target_functions.relax_fit C module and converts the gradient from a Python list to a numpy array.
- The exponential curve-fitting gradient is now scaled by the scaling matrix.
- Clean up of the end of the target_functions.relax_fit.dfunc() function.
- Fixes for the target function chi-squared gradient C function.
- Fixes for all of the exponential functions in target_functions/exponential.c. The condition whereby Rx is zero is now setting the value correctly - the exponential will be 1, not zero, hence the intensity and gradient values should not be zero.
- Clean up of the target function C files (spacing fixes and removal of unused code).
- Changed the argument and variable names in the C code chi-squared gradient function.
- Modified all of the exponential curve functions and gradients in the C target function module. Instead of passing in the parameter vector, now the I0 and R values are passed in separately. This is for greater code flexibility as the parameter order does not need to be known.
- The parameter index is now passed into exponential_dI0() and exponential_dR(). This is for the relaxation curve-fitting C module so that the indices are not hardcoded.
- The I0 and R parameter indices are now defined in the target_function/relax_fit.h header file. This is to abstract the exponential curve parameter indices even more.
- Big cleanup of estimate R2eff module. This is to make the documentation more easy to read and understand. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Created 2 unit tests for the target_functions.relax_fit relax C module. These check the func() and dfunc() Python methods exposed by the module.
- The relax_fit C module unit tests now check if the parameter scaling is functional.
- Added several comments to the R2eff estimate module. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added a script and log file for calculating the numerical gradient for an exponential curve. This uses the data at http://thread.gmane.org/gmane.science.nmr.relax.devel/6807/focus=6840 and calculates the gradient using the scipy.misc.derivative() function both at the minimum and at a point away from the minimum. The values will be used to construct a unit test to check the C module implementation.
- Created a unit test to check the dfunc() function of the relax_fit C module off the minimum.
- Fixes for the target_functions.relax_fit C module unit tests. All values are now set to floats to avoid integer division issues.
- Activated parameter scaling of the gradient in the test_dfunc_off_minimum() unit test. This is the test class test_suite.unit_tests._target_functions.test_relax_fit.Test_relax_fit.
- The exponential curve numeric gradient script now uses only floating point numbers. This is to avoid integer truncation problems.
- Fix for the script for calculating the numerical gradient for an exponential curve. The off-minimum derivative was not correctly calculated.
- Increased the printouts for the script for calculating the numerical gradient for an exponential curve.
- Bug fix for the chi-squared gradient calculation in the C module. The definition of the square() function needed extra brackets so that the 1/error2 calculation would be 1/(error*error) rather than the incorrect 1/error*error form.
- Fix for the test_dfunc_off_minimum() unit test. This is the test class test_suite.unit_tests._target_functions.test_relax_fit.Test_relax_fit. The wrong gradient was being scaled.
- Switched the optimisation algorithm in test_suite/system_tests/scripts/relax_fit.py. This script, used by the Relax_fit.test_curve_fitting_height and Relax_fit.test_curve_fitting_volume system tests, now uses the BFGS optimisation. This is to demonstrate that the exponential curve gradient function dfunc() is implemented correctly and that more advanced optimisation algorithms can be used (excluding those that require the full Hessian d2func() function).
- Got the method of 'Steepest descent' to work properly, by specifying the Jacobian correctly. The Jacobian was derived according to the χ2 function. The key point was to evaluate the two derivative arrays for all times points, and then sum each of the two arrays together, before constructing the Jacobian. This clearly shows the difference between minfx and scipy.optimize.leastsq. scipy.optimize.leastsq takes as input a function F(x0), which should return the array of weighted differences between function value and measured values: "1. / self.errors * (self.calc_exp(self.times, *params) - self.values)". This will be an array with number of elements 'i' corresponding to number of elements. scipy.optimize.leastsq then internally evaluates the sum of squares -> sum[ (O - E)2 ], and minimises this. This is the χ2. Minfx requires the function to minimise before hand. So, the "func" should be χ2. Then the dfunc, and d2func, should be derivative of χ2, but all elements in the array should still be summed together. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Got the Quasi-Newton BFGS to work. This uses only the gradient, this gets the same results as 2000 Monte Carlo with simplex and scipy.optimize.leastsq. Error estimation still not provided. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Removed all code regarding scipy.optimize fmin_cg and fmin_ncg. This problem should soon be able to be solved with minfx. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added initial documentation for multifit_covar. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Modified profiling script to use the new estimate R2eff module. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Modified verify error script, to use new estimate R2eff module. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Removed all unnecessary code from estimate R2eff module. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- More removal of code. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Changed the array declarations in the target_functions/exponential C file and header. Instead of using the pointer format of *xyz, the array format of xyz[] is now being used. These are equivalent and the later is more obvious that this is an array.
- Changed the array declarations in the target_functions/c_chi2 C file and header. Instead of using the pointer format of *xyz, the array format of xyz[] is now being used. These are equivalent and the later is more obvious that this is an array.
- Shifted all of the parameter Python lists to C arrays into the new param_to_c() function. This is for the target_functions.relax_fit C module to avoid much duplicated code.
- Removed the comment and docstring saying that the exponential curve-fitting gradient is unimplemented.
- Updated the copyright notices in the C files of the target_functions directory.
- Implemented the C version of the chi-squared Hessian. This is a direct translation of the Python code.
- Changed the internal variables of the chi-squared gradient C code to match the Python code.
- Standardisation of the array dimensionality in the target function C code. The new target_functions/dimensions.h header file defines MAX_PARAMS and MAX_DATA which is then included in the header files of all the other C files. All array declarations now explicitly specify the length of each dimension. The values of MAX_PARAMS and MAX_DATA have increased from 3 and 50 to 20 and 5000. This is to allow for models with more parameters and to allow a much larger number of input data points to be supported before memory corruptions happen. The data structures now take up more memory, but as the functions do not loop up to maximum but only the number of parameters and points specified, this will not make the code slower.
- All of the C code chi-squared functions now have the array argument dimensions explicitly declared.
- The target_functions/exponential.c file no longer includes exponential.h. This is not needed as exponential.h only contains the function definitions of the exponential.c file.
- Clean up of the header and includes of the target_functions/c_chi2.c file. The square() function macro has been shifted to the header file and the stdio.h and math.h standard library headers are no longer included as they are not used.
- Partly implemented the front end target_functions.relax_fit.d2func() C module Python function. This is not fully implemented as the exponential curve double partial derivatives are not implemented.
- Implemented the exponential curve second partial derivative C functions. These are declared in the exponential.h header file and are now used by the Python function target_functions.relax_fit.d2func().
- The square() function macro is now defined for the target_functions/exponential.c file. This is defined in the header, and now the exponential.h is included in the C file to access it.
- Implemented the specific_analyses.relax_fit.optimisation.d2func_wrapper() function. This converts the numpy parameter array into a Python list, calls the target_functions.relax_fit.d2func() function with this list, converts the Hessian output list of lists into a numpy rank-2 array, and returns it. This will allow Newton optimisation to be used for the relaxation curve-fitting analysis.
- Switched the optimisation algorithm in test_suite/system_tests/scripts/relax_fit.py. This script, used by the Relax_fit.test_curve_fitting_height and Relax_fit.test_curve_fitting_volume system tests, now uses Newton optimisation. This is to demonstrate that the exponential curve gradient function dfunc() and Hessian function d2func() are implemented correctly.
- Added a script and log file for calculating the numerical gradient for an exponential curve. This uses the data at http://thread.gmane.org/gmane.science.nmr.relax.devel/6807/focus=6840 and calculates the Hessian using the numdifftools.Hessian object construct and obtain the matrix, both at the minimum and at a point away from the minimum. The values will be used to construct a unit test to check the C module implementation.
- Fixes for the Hessian.py script for numerical integrating the Hessian for an exponential curve.
- Implemented two unit tests to check the Hessian of the target_functions.relax_fit.d2func() function. This compares the calculated Hessian to the numerically integrated values from the test_suite/shared_data/curve_fitting/numeric_gradient/Hessian.py script, showing that the d2func() function is implemented correctly.
- Modified profiling script, but it seems that the dfunc from target_functions.relax_fit does not work. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Modified estimate R2eff module, to use C code. But system test Relax_disp.test_estimate_r2eff_error shows that the Jacobian is not correctly implemented to be called in minfx.
- Created an initial test suite data directory for a mixed R1ρ + CPMG dispersion analysis. The generate.py script will be extended in the future to generate both synthetic R1ρ and CPMG data for a common exchange process. Such a data combination should show some minor flaws in the current design of the dispersion analysis and will help to solve these.
- Improvements to the pipe_control.minimise.reset_min_stats() function. The minimise statistics resetting is now more elegantly implemented. And the sim_index keyword argument is accepted by the function and individual Monte Carlo simulation elements can now be reset.
- Modified wrapper function for curve_fit, to only change to list type, if the type is a ndarray. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- The model-free reset_min_stats() function has been replaced with the pipe_control.minimise version. The specific_analyses.model_free.optimisation.reset_min_stats() function has been deleted and instead the pipe_control.minimise version is being used.
- Implemented the first try to compute the variance of R2eff and I0, by the covariance. This uses the Jacobian matrix. The errors calculated, are though way to small compared 2000 Monte Carlo simulations. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Tried to implement the Jacobian from C code. This though also report errors which are to small. Maybe some scaling is wrong. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Modified profiling script to calculate timings. The timings for C code are: Simplex, with constraints = 2.192; Simplex, without constraints = 0.216; BFGS, without constraints = 0.079; Newton, without constraints = 0.031; This is pretty pretty fast. To this profiling script, I would also now add some verification on calculations.
- Tried to verify solution to profiling script. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Set the constraints=False when doing Monte Carlo simulations for R2eff. This is to speed up the Monte Carlo simulations by a factor X10, when estimating the error for R2eff. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Implemented the use of "Newton" as minimisation algorithm for R2eff curve fitting instead of simplex. Running the test script: test_suite/shared_data/dispersion/Kjaergaard_et_al_2013/2_pre_run_r2eff.py. For 50 Monte Carlo simulations, the time drop from: 3 minutes and 13 s, to 1 min an 5 seconds. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Changed the relax_fit.py sample script to use Newton rather than Simplex optimisation. This can lead to significantly faster optimisation times, as shown in the commit message http://article.gmane.org/gmane.science.nmr.relax.scm/23081.
- Changed the optimisation description in the relaxation curve-fitting chapter of the manual. The script example has been converted to match the sample script, replacing the Nelder-Mead simplex algorithm with Newton optimisation, and removing the argument turning diagonal scaling off. All the text about only the simplex algorithm being supported due to the missing gradients and Hessians in the C module have been deleted. The text that linear constraints are not supported has also been removed - but this was fixed when the logarithmic barrier constraint algorithm was added to minfx.
- By using minfx, and the reported Jacobian, it is now possible to get the exact same error estimation as scipy.optimize.leastsq. The fatal error was to set the weighting matrix with diagonal elements as the error. There weights are 1/errors2. There is though some unanswered questions left. The Jacobian used, is the direct derivative of the function. It is not the χ2 derivative Jacobian. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Fixed naming of functions, to better represent what they do in module of estimating R2eff. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Implemented the Jacobian of exponential function in Python code. This now also gets the same error as leastsq and C code. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Tried to implement a safety test for linearly-dependent columns in the covariance matrix. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Fixes for the relax_disp.r2eff_estimate user function documentation. This is to allow the relax manual to compile again as the original documentation was causing LaTeX failures.
- Clean up of the declarations in the target_functions.relax_fit C module. The Python list objects are now declared at the start of the functions, and then PyList_New() is called later on. This allows the code to compile on certain Windows systems.
- Removed the user function to estimate the R2eff values and errors with scipy.optimize.leastsq. With the newly implemented Jacobian and Hessian of the exponential decay function, the front-end to scipy.optimize.leastsq does not serve a purpose. This is because minfx is now as fast as scipy.optimize.leastsq, and can estimate the errors from the Jacobian to the exact same numbers as scipy.optimize.leastsq. In addition to that, the covariance can be calculated by QR decomposition. This adds additional feature for checking for a singular matrix. The back-end will still be kept in place for the coming tim, but could be removed later. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added front-end to the new user function relax_disp.r2eff_err_estimate, which will estimate the R2eff errors from a pipe and spins with optimised values of R2eff and I0. The covariance matrix can be calculated from the optimised parameters, and the Jacobian. Big care should be taken not to directly trust these results, since the errors are quite different compared to the Monte Carlo simulations. This implementation, will reach the exact same error estimation as scipy.optimize.leastsq. But with much better control over the data, and insight into the calculations. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added method to automatically perform error analysis on peak heights. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Modified system test Relax_disp.test_estimate_r2eff() to first do a grid search, then minimise and then estimate the errors for R2eff and I0. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added back-end to estimate R2eff errors. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Fix to system test test_estimate_r2eff_error(), to first delete the old error estimations. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added several tests to: test_estimate_r2eff_error, to compare different output from algorithms. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Cleaned up code in R2eff error module. Also removed a non working Hessian matrix. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Moved code around, and made function multifit_covar() independent of class object. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Inserted checks for C module is available in module for estimating R2eff error. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Removed unnecessary call to experimental Exp class. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Renamed system test, that test the user function for estimating the R2eff error: test_estimate_r2eff_err, test the user function. test_estimate_r2eff_err_methods, test different methods for getting the error. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added system test, Relax_disp.test_estimate_r2eff_err_auto and extended functionality to the auto-analyses protocol. If "exp_mc_sim_num" is set to "-1" and sent to the auto-analyses, the errors of R2eff will be estimated from the covariance matrix. These errors is HIGHLY likely to be wrong, but can be used in an initial test fase, to rapidly produce data for plotting data. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added script, to be used in GUI test. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added GUI test Relax_disp.test_r2eff_err_estimate, to test the setting of MC sim to -1 for exponential R2eff error estimation. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added keyword "exp_mc_sim_num", to the auto-analyses in the GUI. This sets the number of Monte Carlo simulations for R2eff error estimation in exponential curve fitting. When setting to -1, the errors are estimated from the covariance matrix. These errors are highly likely to be wrong, but can be used in Rapid testing of data and plotting. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Tried to click the "fit_r1" button in the GUI test, but receives an error: relax --gui-tests Relax_disp.test_r2eff_err_estimate, "AttributeError: 'SpinContainer' object has no attribute 'r1'". Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Moved the mc_sim_num GUI element in the analysis tab ip, as it is executed first. Also modified the tooltip. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added a warning to the auto-analyses about error estimation from the covariance. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Removed yet another comma from GUI tooltip. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Formatting changes for the lib.periodic_table module. This is in preparation for extending the information content of this module.
- Modified system test 'test_estimate_r2eff_err_auto', to use the GUI script. It seems to work perfect. This is to test against GUI script: test_r2eff_err_estimate Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Modified test_estimate_r2eff_err_auto, to set r1_fit to False. This still make the system test pass, and fit R1. So this means R1 fit button is not functioning properly. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Fix for warning message in the auto-analyses in the GUI. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Tried to improve docstring for API documentation. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added all of the IUPAC 2011 atomic weights to the lib.periodic_table module. These will be useful for correctly calculating the centre of mass of a molecule.
- The lib.periodic_table method for adding elements is now private.
- Created the unit test infrastructure for the lib.periodic_table module. This includes one unit test of the lib.periodic_table.periodic_table.atomic_weight() function which has not been implemented yet.
- Implemented the lib.periodic_table.periodic_table.atomic_weight() method. This returns the standard atomic weight of the atom as a float.
- Yet another try to make the API documentation working. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Implemented system test Relax_disp.verify_estimate_r2eff_err_compare_mc for testing R2eff error as function of Monte Carlo simulation. Note, since the name does not start with "test", but with "verify", this test will not be issued in the system test suite. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Converted the periodic table in lib.periodic_table into a dictionary type object. The new Element container has been added for storing the information about each element in the table. The Periodic_table object used the atomic symbol as a key for each Element instance.
- Modified system test test Relax_disp.test_estimate_r2eff_err_methods() to show the difference between using the direct function Jacobian, or the χ2 function Jacobian. Added also the functionality to the estimate R2eff module, to switch between using the different Jacobians. The results show, that R2eff can be estimated better.
- Added isotope information to the lib.periodic_table module including mass number and atomic mass. A new Isotope data container has been added to store this information. The Periodic_table._add() method now returns the initialised Element container. This container has the _add_isotope() method which is used to initialise Isotope data containers with the mass number and atomic mass and append it to the list.
- Created a unit test for the Periodic_table.atomic_mass() method. This method is not implemented yet.
- Changed the method call in the new Test_periodic_table.test_get_atomic_mass unit test.
- Fix for the Test_periodic_table.test_get_atomic_mass unit test - the method calls were incorrect.
- Implemented the lib.periodic_table module Periodic_table.atomic_mass() method. This method will return either the atomic mass of an isotope or the standard atomic weight.
- Changed the operation of the lib.structure.mass.centre_of_mass() function. Instead of using the lib.physical_constants.return_atomic_mass() function, the centre_of_mass() function instead uses the lib.periodic_table.periodic_table.atomic_mass() method. This is a huge improvement in that the exact mass of absolutely all elements are taken into account.
- Deletion of the lib.physical_constants.return_atomic_mass() function and all relative atomic masses. These were inaccurate and only included a tiny subset of all standard atomic weight and isotope masses. The functionality has been replaced by the complete and 100% accurate complete Periodic_table object in the lib.periodic_table module.
- Fix for the MolContainer.fill_object_from_gaussian() method. This is in the lib.structure.internal.molecules module. The Periodic_table.lookup_z_to_symbol() method in the lib.periodic_table module has been renamed to lookup_symbol().
- Fix for the Periodic_table.lookup_symbol() method. The __init__() method of the Periodic_table has been reintroduced to initialise a fast atomic symbol lookup table. The _add() method then updates this table. And the lookup_symbol() method now uses this lookup table to correctly return the symbol.
- Tiny fix for the Diffusion_tensor.test_create_diff_tensor_pdb_ellipsoid system test. The switch to using the lib.periodic_table module for atomic masses has caused the centre of mass of the ellipsoid to shift just enough that one ATOM coordinate in the PDB file has changed its last significant digit.
- Created the lib.periodic_table.process_symbol() function. This will take an atomic symbol and return a copy of it with an uppercase first letter and lowercase second letter. This is used by the Periodic_table methods atomic_mass() and atomic_weight() to allow for non-standard symbol input, for example if the element name comes directly from the all uppercase PDB file format without translation.
- Tried to scale the covariance matrix, as explained here: http://www.orbitals.com/self/least/least.htm. This does not work better. Also replaced "errors" to "weights" to the multifit_covar(), to better determine control calculations. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added all gyromagnetic ratio information from lib.physical_constants to lib.periodic_table. The Periodic_table.gyromagnetic_ratio() method has been added to allow this value to be easily returned.
- Added to back-end of R2eff estimate module, to be able to switch between the function Jacobian or the χ2 Jacobian. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Modified user function relax_disp.r2eff_err_estimate, to be able switch between the Jacobians. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Modified system test Relax_disp.verify_estimate_r2eff_err_compare_mc, to try the difference between the Jacobian. The results are: Printing the estimated R2eff error as function of estimation from covariance and number of Monte Carlo simulations. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Deleted the gyromagnetic ratio values and return_gyromagnetic_ratio() function from lib.physical_constants.
- Shifted all of relax to use the lib.periodic_table module for gyromagnetic ratios. The values and value returning function have been removed from lib.physical_constants and replaced by the Periodic_table.gyromagnetic_ratio() method in the lib.periodic_table module.
- Started making functions in R2eff estimate module, independent on the informations stored in the Class. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Cleaned up code in R2eff estimate module, by making each function independent of class. This is to give a better overview, how the different functions connect together. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Made the user function, which estimates the R2eff errors, use the Jacobian derived from χ2 function. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Modified system test verify_estimate_r2eff_err_compare_mc() to first use the direct function Jacobian, and then the χ2 derived Jacobian. This shows the result better. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added digit to printout in R2eff estimate module. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Locked values for system test test_estimate_r2eff_err, to estimate how the R2eff error estimation reflects on fitted parameters. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- More locking of values, when trying to use different methods for estimating R2eff err values. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- More locking of values. This actually shows, that errors should be estimated from the direct Jacobian. Not, the χ2 Jacobian. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Reverted the logic, that the χ2 Jacobian should be used. Instead, the direct Jacobian exponential is used instead. When fitting with the estimated errors from the direct Jacobian, the results are MUCH better, and comparable to 2000 Monte Carlo simulations. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Various precision fixes for different machine precision. This is in: verify_r1rho_kjaergaard_missing_r1 Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- First attempt at properly implementing the target_functions.relax_fit.jacobian() function. This is now the Jacobian of the chi-squared function. A new jacobian_matrix data structure has been created for holding the matrix data prior to converting it into a Python list of lists. The equation used was simply the chi-squared gradient whereby the sum over i has been dropped and the i elements are stored in the second dimension of matrix.
- Speed up of the target_functions.relax_fit C module. The variances are now pre-calculated in the setup() function from the errors, so that the use of the square() function is minimised. The chi-squared equation, gradient, and Hessian functions now accept the variance rather than standard deviation argument and hence the squaring of errors has been removed. This avoids a lot of duplicated maths operations.
- Alphabetical ordering of global variable declarations in the target_functions.relax_fit header file.
- Added RelaxError, if less than 2 time points is used for exponential curve fitting in R2eff. This follows: http://thread.gmane.org/gmane.science.nmr.relax.user/1718 http://thread.gmane.org/gmane.science.nmr.relax.user/1735 Specifically, data was attached here: http://thread.gmane.org/gmane.science.nmr.relax.user/1735/focus=1736.
- Added system test Relax_disp.test_bug_atul_srivastava(), to catch a bug missing raising a RelaxError, since the setup points to a situation where the data shows it is exponential fitting, but only one time point is added per file. This follows: http://thread.gmane.org/gmane.science.nmr.relax.user/1718 http://thread.gmane.org/gmane.science.nmr.relax.user/1735 Specifically, data was attached here: http://thread.gmane.org/gmane.science.nmr.relax.user/1735/focus=1736.
- Parameter precision lowered for Relax_disp.test_estimate_r2eff_err_auto(). This is due to change to C code. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Created the select.display user function. This simply displays the current spin selections of all spins. In the future it can be extended to display the interatomic data container selections, domain selections, etc.
- Fix for system test: test_estimate_r2eff_err_auto(). The Jacobian to estimate the errors has been changed from the direct function Jacobian, to the Jacobian of the χ2 function. This changes the R2eff error predictions, and hence parameter fitting. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Implemented the direct Jacobian in Python, to be independent of C code in development phase. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Activated all method try in: system test Relax_disp.test_estimate_r2eff_err_methods. This is to quickly estimate errors from all different methods. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Fix to system test: test_estimate_r2eff_err_auto, which now checks the values for the direct Jacobian. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Increased the number of time points for exponential curve fitting to 3.
- Fix to weight properly according to if minimising with direct Jacobian or χ2 Jacobian. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Fix to system test test_estimate_r2eff_err_methods, after modification of weighting. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Switched in estimate_r2eff_err() to use the χ2 Jacobian from C code, and Jacobian from Python code. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Removed all references to test values which was received by wrong weighting. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Better error checking in the relaxation dispersion overfit_deselect() API method. The model must be set for this procedure to work, and the method now checks that this is the case.
- Better error checking for the specific_analyses.relax_disp.average_intensity() function. This function would fail with a traceback if a peak intensity error analysis had not yet been performed. Now it fails instead with a clean RelaxError so that the user knows what is wrong.
- Tried implementing getting the χ2 gradient, using target_function.chi2.dchi2(). The output seem equal. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Replaced the way to calculate the χ2 Jacobian, for exponential fit in minfx. This is only for the test class, but reuses library code. This should make it much easier in the future to implement χ2 gradient functions to minfx, since it is only necessary to implement the direct gradient of the function, and then pass the direct gradient to χ2 library, which turn it into the χ2 gradient function which minfx use. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Moved unnecessary function in R2eff error estimate module into experimental class. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Implemented system test: test_bug_negative_intensities_cpmg, to show lack of error message to user. Maybe these spins should be de-selected, or at least show a better warning. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- An attempt at documenting the Monte Carlo simulation verses covariance matrix error estimates. This is for the R2eff and I0 parameters of the exponential curves. For the Monte Carlo errors, 10000 simulations were preformed. This means that these errors can perform as a gold standard by which to judge the covariance matrix technique. Currently it can be seen that the relax_disp.r2eff_err_estimate user function with the chi2_jacobian flag set to True performs extremely poorly.
- Reintroduced the original target_functions.relax_fit.jacobian() function. The new function for the Jacobian of the chi-squared function has been renamed to target_functions.relax_fit.jacobian_chi2() so that both Python functions are accessible within the C module.
- Epydoc fixes for the pipe_control.mol_res_spin.format_info_full() function.
- Epydoc docstring fixes for many methods in the relaxation dispersion auto-analysis module.
- If math domain errors are found when calculating the two point R2eff values, the point is being skipped. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Moved intensity negative value from reference to CPMG point.
- Modified system test test_bug_negative_intensities_cpmg, to prepare for testing number of R2eff points. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Comparison of 10,000 Monte Carlo simulations to a different covariance matrix error estimate. The covariance_matrix.py script has been duplicated and the chi2_jacobian argument of the relax_disp.r2eff_err_estimate user function has been changed from True to False. As can be seen in the 2D Grace plots, this error estimate is incredibly different. The R2eff errors are overestimated by a factor of 1.9555, which indicates that the Jacobian or covariance matrix formula are not yet correct.
- The target_functions.relax_fit C module Python function jacobian_chi2() is now exposed. This was previously not visible from within Python.
- Added a script and log file for calculating the numerical Jacobian for an exponential curve. This uses the data at http://thread.gmane.org/gmane.science.nmr.relax.devel/6807/focus=6840 and calculates the Jacobian using the numdifftools.Jacobian object construct and obtain the matrix, both at the minimum and at a point away from the minimum. The values will be used to construct a unit test to check the C module implementation.
- Created two unit tests showing the target_functions.relax_fit.jacobian() function is correct. This compares the calculated Jacobian to the numerically integrated values from the test_suite/shared_data/curve_fitting/numeric_gradient/jacobian.py script.
- Renamed the test_data/shared_data/curve_fitting/numeric_gradient/ directory to numeric_topology. This is to better reflect that it contains numeric approximations to the gradient, Hessian, and Jacobian.
- Added a script and log for calculating the numerical chi-squared Jacobian for an exponential curve. This uses the data at http://thread.gmane.org/gmane.science.nmr.relax.devel/6807/focus=6840 and calculates the chi-squared Jacobian using the numdifftools.Jacobian object construct and obtain the matrix, both at the minimum and at a point away from the minimum. The values will be used to construct a unit test to check the C module implementation.
- Fix for the chi-squared Jacobian numerical approximation script. The function was modified to that a list of chi-squared elements are returned, i.e. the sum part of the chi-squared equation has been removed.
- Created two unit tests showing the target_functions.relax_fit.jacobian_chi2() function is correct. This compares the calculated chi-squared Jacobian to the numerically integrated values from the test_suite/shared_data/curve_fitting/numeric_topology/jacobian_chi2.py script.
- Added a script and log for calculating the numerical covariance matrix for an exponential curve. This uses the data at http://thread.gmane.org/gmane.science.nmr.relax.devel/6807/focus=6840 and calculates the covariance matrix via the Jacobian calculated using the numdifftools.Jacobian object construct and obtain the matrix, both at the minimum and at a point away from the minimum. The covariance is calculated as inv(J^T.W.J).
- Added a script and log for calculating the exponential curve parameter errors via bootstrapping. This uses the data at http://thread.gmane.org/gmane.science.nmr.relax.devel/6807/focus=6840 and calculates the parameter errors via bootstrapping. As the parameters at the minimum are the exact parameter values, bootstrapping and Monte Carlo simulation converge and hence this is a true error estimate. 200,000 simulations where used, so the parameter errors are extremely accurate.
- Modified module to estimate R2eff errors, to use the C code Jacobian. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Modified system test test_estimate_r2eff_err_methods, to check all Jacobian methods are correctly implemented. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added more print out information, when log(I / I_ref) is negative, and raising errors. This can help the user track back information to the error more easily.
- Improved system test test_bug_negative_intensities_cpmg, by counting number of R2eff points. Spin 4, which has one negative intensity, is expected to have one less R2eff point. This makes sure, that all CPMG data set can be loaded and analysed, even if some peaks are very weak are fluctuating with error level.
- Fix for also storing 'r1_fit' to cdp even though it is set to False. Bug #22541: The R1 fit flag does not work in the GUI.
- Cleanup in GUI test Relax_disp.test_r2eff_err_estimate. This now passes after previous commit. Bug #22541: The R1 fit flag does not work in the GUI.
- Added model DPL94, to be tested in GUI test Relax_disp.test_r2eff_err_estimate. This shows that the bug is still there. Bug #22541: The R1 fit flag does not work in the GUI.
- Fix for system test test_estimate_r2eff_err and test_r1rho_kjaergaard_missing_r1, where r1_fit=True, needed to be send to Auto_analyses. Bug #22541: The R1 fit flag does not work in the GUI.
- API documentation fixes.
- Moved multifit_covar into lib.statistics, since it is an independent module. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Moved "func_exp_grad" into experimental class for different minimisation methods. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Improved documentation to user function relax_disp.r2eff_err_estimate, and removed the possibility to use the χ2 Jacobian, as this is rubbish. But the back-end still have this possibility, should one desire to try this. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Moved the argument 'chi2_jacobian' as the last argument in estimate_r2eff_err. This argument is highly likely not to be used, but is kept for future testing purposes. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Fix to experimental class for fitting with different methods. After moving the function into class, 'self' should be added to the function. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Fix to system test test_estimate_r2eff_err, after removing the possibility to use the χ2 Jacobian. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Fix for system test test_estimate_r2eff_err_methods. The function was called wrong in experimental class. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Initial try write comments how to generalize the scaling of the covariance according to the reduced χ2 distribution. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- First try to make a test script for estimating efficiency on R2eff error calculations. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added number of simulations to 10,000 in test script, and varied the random number of time point per simulation between 3 and 10. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- In module for estimating R2eff errors, removed "values, errors" to be send to function for gradient, since they are not used. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added Jacobian to test script, and now correctly do simulations, per R2eff points. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Improved analysing test script, with plotting. It seems that R2eff error estimation always get the same result. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added initial dataset for test analysis. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Deleted test data set. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Modified data script generator, to handle a situation with fixed 5 time points, and a situations with variable number of time points. Also modified analysis script. It seems, this has an influence how the error estimation is performing. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added simulations that show, there is perfect agreement between Monte Carlo simulations and covariance estimation. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Inserted extra tests in system test Relax_disp.test_estimate_r2eff_err_methods to test that all values of R and I0 are positive, and the standard deviation from Monte Carlo simulations are equal. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Inserted system test Relax_disp.test_finite_value, to illustrate the return of inf from C code exponential, when R is negative. This can be an issue, if minfx takes a wrong step when no constraints are implemented. Bug #22552: χ2 value returned from C code curve-fitting return 0.0 for wrong parameters -> Expected influence on Monte Carlo sim.
- Inserted possibility for bootstrapping in system test Relax_disp.test_estimate_r2eff_err_methods. This shows, that the bootstrapping method get the SAME estimation for R2eff errors, as the estimate_r2eff_err() function. This must either mean, that the OLD Monte Carlo simulation was corrupted, or the creation of data in Monte Carlo simulations is corrupted.
- Modified system test Relax_disp.verify_estimate_r2eff_err_compare_mc to include bootstrapping method. This shows there is excellent agreement between bootstrapping and estimation of errors from covariance, while relax Monte Carlo simulations are very much different. Boot strapping is the "-2": Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added functionality to create peak lists, for virtual data. This is to compare the distribution of R2eff values made by bootstrapping and Monte Carlo simulations. Rest of the analysis will be performed in relax. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added initial peak lists to be analysed in relax for test purposes. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added relax analysis script, to profile distribution of errors drawn in relax, and from Python module "random". It seems that relax draw a lot more narrow distribution of Intensity with errors, than Python module "random". This has an influence on estimated parameter error. This is a potential huge error in relax. A possible example of a catastrophic implementation of Monte Carlo simulations. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Added PNG image that show that the distribution which relax makes are to narrow. This is a potential huge flaw in implementation of Monte Carlo simulations. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Modified analysis script, to also make histogram of intensities. This shows that the created intensities are totally off the true intensity. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting.
- Comment fix to system test Relax_disp.test_estimate_r2eff_err_methods, after the found of bug in relax. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting. Bug #22554: The distribution of intensity with errors in Monte Carlo simulations are markedly more narrow than expected.
- Cleaned up user function for estimating R2eff errors. Extensive tests have shown, there is a very good agreement between the covariance estimation, and Monte Carlo simulations. This is indeed a very positive implementation. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting. Bug #22554: The distribution of intensity with errors in Monte Carlo simulations are markedly more narrow than expected.
- Removed all junk comments from module for R2eff error estimation. The module runs perfect as it does now. Task #7822: Implement user function to estimate R2eff and associated errors for exponential curve fitting. Bug #22554: The distribution of intensity with errors in Monte Carlo simulations are markedly more narrow than expected.
- Fix for inf values being returned from C code exponential function. Values are now converted to high values. This fixes system test Relax_disp.test_finite_value. Example: x = np.array([np.inf, -np.inf, np.nan, -128, 128]), np.nan_to_num(x), array([ 1.79769313e+308, -1.79769313e+308, 0.00000000e+000, -1.28000000e+002, 1.28000000e+002]). Bug #2255: χ2 value returned from C code curve-fitting return 0.0 for wrong parameters -> Expected influence on Monte Carlo sim. Ref: http://docs.scipy.org/doc/numpy/reference/generated/numpy.nan_to_num.html.
- Initial try to reach constrained methods in minfx through relax. This is in system test Relax_disp.verify_estimate_r2eff_err_compare_mc() This though not seem to be supported.
- Allow R2eff model to reach constrained methods in minfx through relax. This is in system test Relax_disp.verify_estimate_r2eff_err_compare_mc() This though not seem to be supported.
- Modified specific_analyses.relax_disp.parameters.r1_setup() to initialise the 'r1' variable. This relates to bug #22541, the R1 fit flag does not work in the GUI. This is a hack, as all of the dispersion analysis code assumes that all parameters are initialised. This is a dangerous assumption that will have to be eliminated in the future.
- The dispersion get_param_values() API method now calls the r1_setup() function. This relates to bug #22541, the R1 fit flag does not work in the GUI. This is to make sure that the parameters are correctly set up prior to obtaining all parameter values. The R1 parameter is dynamic hence r1_setup() needs to be called at any point model parameters are accessed, as the R1 parameter can be turned on or off at any time with the relax_disp.r1_fit user function.
- Yet another try to implement constrained method in verify_estimate_r2eff_err_compare_mc.
- Another attempt to reach constrained method in minfx through relax. I would need to specify: l, lower bound constraint vector (l ≤ x ≤ u); u, upper bound constraint vector (l ≤ x ≤ u); c: user supplied constraint function; dc: user supplied constraint gradient function.
- Added a derivation of the R2eff/R1ρ error estimate for the two-point measurement to the manual. This is from http://thread.gmane.org/gmane.science.nmr.relax.devel/6929/focus=6993 and is for the rate uncertainty of a 2-parameter exponential curve when only two data points have been collected. The derivation has been added to the dispersion chapter of the manual.
- Equation fixes for the two-point exponential error derivation in the dispersion chapter of the manual.
- Updated the minfx version numbers in the release checklist document. The version is now 1.0.10, which has not been released yet but will contain the implementation of the log-barrier constraint algorithm gradient and Hessian.
- Fix for the minfx version checking logic in the dep_check module. Now newer versions of minfx will be handled.
- Fixes for the Relax_disp.test_estimate_r2eff_err system test. The kex parameter value checks have all been scaled by 1e-5 to allow for a meaningful floating point number comparison. The number of significant figures have also been scaled. This allows the test to now pass on one 64-bit GNU/Linux system.
- Another fix for the minfx version checking in the dep_check module. The version_comparison() function has been created to perform a proper version number comparison by stripping trailing zeros, converting the two version numbers to lists of int and comparing the lists using the Python cmp() function. This will return -1 when the version number is too low, 0 when the versions are equal, and 1 when the version is higher than the minimum.
- Added a button for the spectrum.error_analysis user function to the spectra list GUI element. This is placed after the 'Add' and 'Delete' buttons. The functionality could be improved by presetting the spectrum ID argument to anything the user has selected in the spectrum list.
- Modified the behaviour of the spectrum.error_analysis button in the spectrum list GUI element. Now the subset argument of this user function will be pre-set to any spectra selected in the list.
- Improvements for the spectrum.error_analysis button in the spectrum list GUI element. The user function is now launched as being modal so that the rest of the GUI freezes, and after the user function is executed the relax controller window is show and scrolled to the bottom.
- Added Relax_disp system tests to black-list, if they depend on C code module.
- Improvements for the spectrum.error_analysis button in the spectrum list GUI element. The subset argument is set to None if no spectra are selected.
- Loosened a value check to allow the Relax_disp.test_r1rho_kjaergaard_missing_r1 system test to pass. This test fails on MS Windows systems.
- Fix for the Relax_disp.test_estimate_r2eff_err_auto system test on MS Windows systems. One of the value checks has been loosened.
- Python 2 vs. 3 compatibility fix for the pickle module. This is for the estimate_errors*.py scripts in the directory test_suite/shared_data/curve_fitting/numeric_topology/. The lib.compat.pickle module is now used to allow both Python versions to run relax.
- Python 3 fix, the cmp(v1, v2) notation in the dep_check.version_comparison() function has been replaced with (v1 > v2) - (v1 < v2). This allows relax to run on Python 3.
- Python 3 fix for the lib.periodic_table module, the Python string module does not exist in Python 3.
- Created the user_functions.uf_translation_table list. The elements of this list are the names of user functions before and after a renaming. The list is provided for backwards compatibility for relax scripts, though it is not used yet.
- Converted the user_functions.uf_translation_table object to a dictionary. This is for faster access which does not require looping.
- The prompt UI now uses the user_functions.uf_translation_table dictionary. The modified runcode() function will now check if the command typed by the user is a function or method call and then will raise a RelaxError if the command name is in the user_functions.uf_translation_table dictionary, telling the user that the user function has been renamed to the new name in the translation table. This appears to have no effect in the script UI however.
- Hack in the script UI for handling missing user functions due to it being renamed. This script UI requires a different solution as the prompt UI. The script is executed via the runpy Python module and there appears to be no clean way of catching each command before it is executed. So instead, prior to executing the script, the contents of the script are read and old user functions are searched for using re.search(). The old user function name has "(" appended to it in the search so that it is sure that it is a user function call. And the old function must have a space or newline character preceding it.
relax 3.2 series
relax 3.2.3
- Added proper sectioning to the release checklist document.
- Added the upload script to the release checklist document.
- Modified the Sequence GUI input element used for the user function list arguments. The first column is now of fixed with when titles are supplied. Previously when supplying titles, the width would be tiny and no text would be visible.
- Added titles for all 3D coordinate user function arguments. This is for the Sequence GUI input element, and affects the frame_order.average_position, n_state_model.CoM and paramag.centre user functions.
- The compilation of the C modules now respects the user defined environment. This is the patch from Justin attached to bug #22145. It has been modified to include a comment and remove a double empty line.
- Bug fix for the compilation of the C modules now respects the user defined environment. The problem was that on Mac OS X (as well as other systems), that these environmental variables were not defined and hence the scons commands would all fail with a KeyError and traceback. Now the keys in the os.environ dictionary are being searched for before they are set.
- Fix for the wxPython link in the installation chapter of the manual. This was pointing to the scipy website for some reason.
- Changed the Python readline link for MS Windows in the installation chapter of the manual. This now points to https://pypi.python.org/pypi/pyreadline as the iPython link is broken.
- Implemented system test Relax_disp.test_bug_22146_unpacking_r2a_r2b_cluster. This is to catch the wrong unpacking of R2A0 and R2B0 when performing a clustered full dispersion model analysis. Bug #22146 Unpacking of R2A0 and R2B0 is performed wrong for clustered "full" dispersion models.
- Extended system test Relax_disp.test_bug_22146_unpacking_r2a_r2b_cluster for B14 full model. This is to catch the wrong unpacking of R2A0 and R2B0 when performing a clustered full dispersion model analysis. Bug #22146 Unpacking of R2A0 and R2B0 is performed wrong for clustered "full" dispersion models.
- Extended system test Relax_disp.test_bug_22146_unpacking_r2a_r2b_cluster for NS CPMG 2-site 3D full model. This is to catch the wrong unpacking of R2A0 and R2B0 when performing a clustered full dispersion model analysis. Bug #22146 Unpacking of R2A0 and R2B0 is performed wrong for clustered "full" dispersion models.
- Extended system test Relax_disp.test_bug_22146_unpacking_r2a_r2b_cluster for NS CPMG 2-site star full model. This is to catch the wrong unpacking of R2A0 and R2B0 when performing a clustered full dispersion model analysis. Bug #22146 Unpacking of R2A0 and R2B0 is performed wrong for clustered "full" dispersion models.
- Added synthetic data generator script which created the data to test against. Bug #22146 Unpacking of R2A0 and R2B0 is performed wrong for clustered "full" dispersion models.
- Split system test Relax_disp.test_bug_22146_unpacking_r2a_r2b_cluster up in different tests. A setup function which is: setup_bug_22146_unpacking_r2a_r2b_cluster(self, folder=None, model_analyse=None): And then the tests: test_bug_22146_unpacking_r2a_r2b_cluster_B14 test_bug_22146_unpacking_r2a_r2b_cluster_CR72 test_bug_22146_unpacking_r2a_r2b_cluster_NS_3D test_bug_22146_unpacking_r2a_r2b_cluster_NS_STAR. Bug #22146 Unpacking of R2A0 and R2B0 is performed wrong for clustered "full" dispersion models.
- Modified profiling script to get closer to the implementation in relax. An additional test function is setup to figure out how to reshape the numpy arrays in the target function. Bug #22146 Unpacking of R2A0 and R2B0 is performed wrong for clustered "full" dispersion models.
- Updated profiling text for CR72 model. Now it is tested for 3 fields. This is related to: Task #7807: Speed-up of dispersion models for Clustered analysis.
- Added searching for environment variable PYTHON_INCLUDE_DIR if Python.h is not found in standard Python library. This can be very handsome, if one has a Python virtual environment for multiple users. This relates to the wiki page: http://wiki.nmr-relax.com/Epd_canopy.
- The lib.compat.norm() replacement function for numpy.linalg.norm() now handles no axis argument. This is to allow the function to be used in all cases where numpy.linalg.norm() is used, while providing compatibility with the axis argument and all numpy versions.
- Fix for the scons target for compiling the relax manual when using a repository checkout copy. The method for compiling the relax manual was calling the version.revision() function, however this has been replaced a while ago by the version.repo_revision variable.
- Created two unit tests for the lib.io.file_root() function. The second of the tests demonstrate a failure of the function if multiple file extensions are present.
- Lowered χ2 value test in system test Relax_disp.test_bug_22146_unpacking_r2a_r2b_cluster_NS_STAR. This is due to the data produced on 32 bit machine, and tested on 64 bit machines. The error was: AssertionError: 2.4659455670347743e-05 != 0.0 within 7 places. The reason for this is due to truncation artifacts.
- Fix for wrong path testing of Python.h. Python.h would be in PYTHON_PREFIX/include/pythonX.Y/Python.h and not in PYTHON_PREFIX/include/Python.h.
- Better handling of the control-C keyboard interrupt signal in the relax test suite. This includes two changes. The Python 2.7 and higher unittest.installHandler() function is now called, when present, to terminate all tests using the unittest module control-C handler. The second change is that the keyboard interrupt signal is caught in a try-except statement, a message printed out, and the tests terminated. This should be an improvement for all systems.
- Adding last profiling information for model CR72.
- Added system test for model LM63 3-site. According to results folder in test_suite/shared_data/dispersion/Hansen/relax_results/LM63 3-site. This should pass, but it doesn't.
- Created an initial Relax_disp.test_lm63_3site_synthetic system test. This should have been set up a long time ago. It uses the synthetic noise-free data in the test_suite/shared_data/dispersion/lm63_3site directory which was created for a system test but never converted into one. The test still needs modifications to allow it to pass.
- Modifications for the Relax_disp.test_lm63_3site_synthetic system test. The r2eff_values.bz2 saved state file has been updated, as it was too old to use in the test. The test has also had a typo bug fixed and the data pipe name updated. The test now also checks all of the optimised values.
- Removed system test test_hansen_cpmg_data_to_lm63_3site. This was a temporary implementation and has been replaced with system test Relax_disp.test_lm63_3site_synthetic.
- Fixes for all of the relaxation dispersion system tests which were failing with the new minfx code. Due to the tuning of the log barrier constraint algorithm in minfx in the commit at http://article.gmane.org/gmane.science.mathematics.minfx.scm/25, many system tests needed to be slightly adjusted. Two of the Relax_disp.test_tp02_data_to_* system tests were also failing as the optimisation can no longer move out of the minimum at pA = 0.5 for one spin (due to the low quality grid search in the auto-analysis).
- Updated the release checklist document for the new 1.0.7 release of minfx.
- Fixes for the Relax_disp.test_hansen_cpmg_data_missing_auto_analysis system test. The pA parameter is no longer tested for one spin as it moves to random values on different operating systems and 32 vs. 64-bit systems. This is because this spin experiences no exchange, both Δω and kex are zero.
- Decreased the value checking precision in the Relax_disp.test_hansen_cpmg_data_to_lm63 system test. This is to allow the test to pass on certain operating systems and 32-bit systems.
- Modified the precision of the output from the relax_disp.sherekhan_input user function. This is simply to allow the Relax_disp.test_sod1wt_t25_to_sherekhan_input system test to pass on certain 32-bit systems, as the float output to 15 decimal places is not always the same. This system test has been updated for the change.
- Modified the Relax_disp.test_sprangers_data_to_mmq_cr72 system test to pass on certain systems. This test fails on 32-bit Linux (and probably other systems as well). To fix the test, the kex values are all divided by 100 before checking them to 4 decimal places of accuracy.
- Improved how the relax installation path is determined in the status object. If the path cannot be found, the current working directory is then checked if it is where relax is installed. This is needed when importing modules outside of relax.
- Hack to permanently eliminate the
^[[?1034h
escape code being produced on Linux systems. This is produced by importing the readline module. The escape code will be sent to STDOUT every time relax is executed, so it will be present in all log files. The problem is the TERM environmental variable being set to 'xterm'. The hack simply sets TERM to an empty string. - More hacks for permanently eliminating the
^[[?1034h
escape code being produced on Linux systems. This is a nasty feature of the GNU readline library. It is now also turned off in the dep_check module, suppressing^[[?1034h
in Python scripts which import only parts of relax. - Numpy version 1.6 or higher is now required to be able to run relax. This follows from the series of messages: http://www.mail-archive.com/relax-devel@gna.org/msg06288.html, http://www.mail-archive.com/relax-devel@gna.org/msg06289.html, http://www.mail-archive.com/relax-devel@gna.org/msg06327.html, and http://www.mail-archive.com/relax-devel@gna.org/msg06335.html. If too many users complain, maybe this change can be reverted later. This minimal numpy version is needed for many of the speed ups going in the relaxation dispersion and frame order analyses. It is required for the numpy ufunc out arguments and for the numpy.eigsum() function. These will likely be used in other analyses in the future for improving the speed of relax, so it might affect users of other analyses later on.
- Updated the numpy minimal dependency in the installation chapter of the manual to version 1.6.
- Added better epydoc sectioning to the lib.dispersion.ns_cpmg_2site_expanded module docstring. This is to better separate the original scripts used to document the code evolution.
- Empty lines are now handled by the lib.structure.pdb_write.remark() function. By supplying the remark as None, empty lines can now be created in the REMARK section of a PDB file. This can be used for nicer formatting.
- Fixes for the Diffusion_tensor system tests due to the recent PDB file changes. Prior to the comparison of the generated PDB files, all REMARK PDB lines are now stripped out.
- Fixes for all system tests failing due to the expanded and improved PDB REMARK section. The system tests now remove all REMARK records prior to comparing file contents. The special strip_remarks() system test method has been created to simplify the stripping process.
- Fix for the software verification tests. The recent expansion and improvements of the REMARK records created by the internal structural object PDB writing method imported the relax version to place this information into the PDB files. However this breaks the relax library design, as shown by the verification tests. Instead the relax version information is being taken from the lib.structure.internal.object.RELAX_VERSION variable. This defaults to None, however the version module now sets this variable directly when it is imported so that it is always set to the current relax version when running relax.
- General Python 3 fixes via the 2to3 script.
- Removed the lib.compat.sorted() function which was providing Python2.3 compatibility. For a while now, relax has been unable to run on Python versions less than 2.5. Therefore there is no use for having this replacement function for Python ≤ 2.3 which was being placed into the builtins module.
- Python 3 fixes for the entire codebase using the 2to3 script. The command used was: 2to3 -j 4 -w -f xrange .
- The internal structural object add_molecule() and has_molecule() methods are now model specific. This allows for finer control of structural object.
- Created the new lib.structure.files module. This currently contains the single find_pdb_files() function which will be used to find all *.pdb, *.pdb.gz and *.pdb.bz2 versions of the PDB file in a given path.
- Fix for the breakage of the relax help system. This was reported at http://thread.gmane.org/gmane.science.nmr.relax.devel/6481. The problem was that the TERM environmental variable was turned off to avoid the GNU readline library on Linux systems emitting the
^[[?1034h
escape code. See the message at http://thread.gmane.org/gmane.science.nmr.relax.devel/6481/focus=6489 for more details. However the Python help system obviously requires this environmental variable. Now only if the TERM variable is set to 'xterm' will it be reset, and to 'linux' instead of the blank string "". This does not affect any relax releases.
relax 3.2.2
- Small speed up for all the isotropic cone and pseudo-elliptic cone frame order models. The vector length calculation for the numeric PCS integration has been simplified and shifted outside of a loop to take advantage of the speed of numpy.
- All three file arguments for the pymol.frame_order user function are now optional.
- Updated all the API documentation links in the dispersion chapter of the manual. These were pointing to http://www.nmr-relax.com/api/3.1/ whereas they should now be point to http://www.nmr-relax.com/api/3.2/.
- Modified a printout in the 'devel_scripts/code_validator' script. This is to clarify that the first method of a class does not need two preceding empty lines.
- Shifted some functions from lib.structure.geometric into their own modules. The angles_regular() and angles_uniform() functions are now in the lib.structure.angles module, and the get_proton_names in lib.structure.conversion.
- Deletion of the pipe_control.structure.main.create_cone_pdb() function. This is only used in the frame order analysis, but has been made redundant by the lib.structure.represent.cone.cone() function.
- Completed the frame_order.pdb_model user function backend for the frame order PDB representation. Most of this backend, including the axes and cone representations, had been broken for quite a while and were being skipped with an early return statement. This has now been made functional and a few fixes have been made. For the 'rotor' and 'free rotor' model, the neg_cone argument is now ignored so that only one model is produced in the final frame order PDB representation file. For all other models, the rotor representation is no longer centred to the point on axis closest to the centre of mass, as the pivot is unambiguously defined. The rotor representation has also been made larger in these models so that it is outside of the cone, and the propeller blades are now staggered.
- Modified py_type from "list" to "float_array" in uf_object type in user function dx.map. Bug #22035 The dx.map user function is broken in the GUI.
- Added py_type "list_val_or_list_of_list_val" to be handled in GUI uf_objects. Bug #22035 The dx.map user function is broken in the GUI.
- Modified the frame order constraints so that coneθx ≤ coneθy. The linear_constraints() function docstring has been updated to include this constraint.
- Set dim=4 when setting chi surface level in user function dx.map.
- Fix for the n_state_model.cone_pdb user function for the recent internal structural object changes. The cone arguments should now be called cone_obj.
- Renamed the relax_disp.set_grid_r20_from_min_r2eff user function to relax_disp.r20_from_min_r2eff. This follows from the proposal at http://thread.gmane.org/gmane.science.nmr.relax.devel/5957.
- Modification to the Sequence_2D GUI element used for some user function windows. The selection_win_show() method has been redefined, as the parent method from the Sequence element is specific for the 1D sequence module. The open_dialog() method has also been modified to use the new selection_win_show(), as well as the parent Sequence class selection_win_data() method.
- Created the User_functions.test_structure_rotate GUI tests. This is to catch bug #22100, the rotation argument for the structure.rotate user function cannot be changed in the GUI, as an AttributeError is raised.
- Moved py_type "list_val_or_list_of_list_val" to 2D sequence types.
- Added dim dimensions to match the {x, y, z} positions for GUI input in user function dx.map.
- Modified the User_functions.test_structure_rotate GUI test to change and check the rotation matrix.
- Some more fixes for the User_functions.test_structure_rotate GUI test. The open_dialog() method cannot be used, as it deletes the window at the end. Instead the selection_win_show() and selection_win_data() method combination is used.
- Expanded the User_functions.test_structure_rotate GUI test. This is to more extensively check the 'float_matrix' user function argument type in the GUI.
- Modified the dim dimensions to (None, 3) to allow the user to change number of points in the GUI. This is for the user function dx.map.
- Simplified the User_functions GUI tests. The exec_uf_pipe_create() method has been created to simplify the data pipe creation in the tests.
- Expanded the User_functions.test_structure_rotate GUI test. The rotation matrix argument checks for the Sequence_2D GUI element have been expanded to check that setting nothing (blank element) returns nothing (None). The other checks have also been slightly modified.
- Expanded the User_functions.test_structure_rotate GUI test to catch more problems. Now the rotation matrix value in the user function window is set to a series of invalid values to test if the Sequence_2D GUI element will handle the rubbish input. This is to mimic user errors.
- Created the is_list() and is_list_of_lists() functions for the lib.check_types module.
- Clean up of the User_functions.test_structure_rotate GUI test. The invalid value check is simpler and the Sequence_2D GUI object return value is now checked to be None.
- Expanded the User_functions.test_structure_rotate GUI once more. This time the setting of invalid values in the Sequence_2D element itself is now checked. For example for the rotation matrix of the structure.rotate user function, if a matrix element is set to a string, a NameError is raised.
- Created the User_functions.test_dx_map GUI test. This extensively checks the 'point' argument for the dx.map user function GUI window. This is to catch bug #22102, the point argument of the dx.map user function being incorrect in the GUI.
- Modified the User_functions.test_dx_map GUI test to catch another problem with the Sequence_2D element.
- Fixes for the frame order PDB presentation in the frame_order.pdb_model user function backend.
- Expanded the User_functions.test_dx_map GUI test once again. The new test is to set 2 valid points in the wizard, open and close the Sequence_2D window (twice), and check that the points come back.
- Increased the width of the first column of the Sequence_2D GUI element for variable lists. This is so the column title "Number" will fit.
- Added list titles for the dx.map user function point argument. This is so that the Sequence_2D GUI element will have column titles of 'X coordinate', 'Y coordinate', and 'Z coordinate'.
- The self.variable_length flag is now used throughout the Sequence GUI element.
- The self.variable_length flag is used in one more spot in the Sequence_2D GUI element.
- Created the User_functions.test_structure_add_atom GUI test. This is used to check the operation of the Sequence GUI element via the 'pos' argument of the structure.add_atom user function. This is a list fixed to 3 elements.
- Titles are now handled and set in the Sequence GUI element. The titles will replace the numbering of 1 onwards in the first column of the GUI element.
- Small fix for switched indices in the new User_functions.test_structure_add_atom GUI test.
- Modified the 'pos' argument of the structure.add_atom user function. The argument is now a list of fixed length of 3, and it has the titles 'X coordinate', 'Y coordinate', and 'Z coordinate' which are shown in the GUI.
- Created the User_functions.test_spectrum_read_intensities GUI test to catch bug #22105. The problem is that a single file name is split up into many files when the file selection button is clicked, one for each character of the file name.
- Fix for the User_functions.test_spectrum_read_intensities GUI test. A valid value was being checked as invalid.
- Shifted all wildcards used in GUI file selection dialogs into the new user_functions.wildcard module. These have now all been standardised, and expanded to include more capitalisation combinations and to include more *.* options.
- Created a file selection wildcard for use in the GUI for selecting peak lists. This is used in the four user functions which read peak lists.
- Changed all *.* GUI file selection wildcards to *.
- Huge speedup for model CR72. Task #7793 Speedup of dispersion models. The system test Relax_disp.test_cpmg_synthetic_cr72_full_noise_cluster changes from 7 seconds to 4.5 seconds. This is won by not checking single values in the R2eff array for math domain errors, but calculating all steps, and in one single round check for finite values. If just one non-finite value is found, the whole array is returned with a large penalty of 1e100. This makes all calculations be the fastest numpy array way.
- Fix for system test test_cpmg_synthetic_dx_map_points. Task #7793 Speedup of dispersion models.
- Critical fixes for system test Relax_disp.test_hansen_cpmg_data_missing_auto_analysis. Task #7793 Speedup of dispersion models. It is suspected that when relax have touched boundary values which made math domain errors, the error catching have created local minima or interfered with the simplex search algorithm.
- Speedup of model TSMFK01. Task #7793 Speedup of dispersion models. This is won by not checking single values in the R2eff array for math domain errors, but calculating all steps, and in one single round check for finite values. If just one non-finite value is found, the whole array is returned with a large penalty of 1e100. This makes all calculations be the fastest numpy array way.
- Huge speedup of model B14. Task #7793 Speedup of dispersion models. Time test for system tests: test_baldwin_synthetic 2.626s -> 1.990s, test_baldwin_synthetic_full 18.326s -> 13.742s. This is won by not checking single values in the R2eff array for math domain errors, but calculating all steps, and in one single round check for finite values. If just one non-finite value is found, the whole array is returned with a large penalty of 1e100. This makes all calculations be the fastest numpy array way.
- Speedup of model TP02. Task #7793 Speedup of dispersion models. The change for running system test is: test_curve_type_r1rho_fixed_time 0.057s -> 0.049s, test_tp02_data_to_ns_r1rho_2site 10.539s -> 10.456s, test_tp02_data_to_tp02 8.608s -> 5.727s. This is won by not checking single values in the R1ρ array for math domain errors, but calculating all steps, and in one single round check for finite values. If just one non-finite value is found, the whole array is returned with a large penalty of 1e100. This makes all calculations be the fastest numpy array way.
- Huge speedup for model TAP03. Task #7793 Speedup of dispersion models. The change for running system test is: test_tp02_data_to_tap03 13.869s -> 7.263s. This is won by not checking single values in the R1ρ array for math domain errors, but calculating all steps, and in one single round check for finite values. If just one non-finite value is found, the whole array is returned with a large penalty of 1e100. This makes all calculations be the fastest numpy array way.
- Speedup of model MP05. Task #7793 Speedup of dispersion models. The change in system test is: test_tp02_data_to_mp05 10.750s -> 6.644s.
- Speedup of model MMQ CR72. Task #7793 Speedup of dispersion models. Change in system test: test_sprangers_data_to_mmq_CR72 9.892s -> 4.121s.
- Speedup for model M61. Task #7793 Speedup of dispersion models. Change in speed is: test_m61_data_to_m61 6.692s -> 3.480s.
- Speedup of model LM63. Task #7793 Speedup of dispersion models. Change in system test was: test_hansen_cpmg_data_auto_analysis 13.731s -> 9.971s, test_hansen_cpmg_data_auto_analysis_r2eff 13.370s -> 9.510s, test_hansen_cpmg_data_to_lm63 3.254s -> 2.080s.
- Speedup of model IT99. Task #7793 Speedup of dispersion models. Change in speed is: test_hansen_cpmg_data_auto_analysis 9.74s -> 8.330s, test_hansen_cpmg_data_to_it99 4.928s -> 3.138s.
- Speedup of model DPL94. Task #7793 Speedup of dispersion models. Change in speed is: test_dpl94_data_to_dpl94 19.412s -> 4.427s.
- Math-domain catching for model B14. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These can be found via the --numpy-raise function to the system tests. To make the code look clean, the class object "back_calc" is no longer being updated per time point, but is updated in the relax_disp target function in one go.
- Math-domain catching for model CR72. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These can be found via the --numpy-raise function to the system tests. To make the code look clean, the class object "back_calc" is no longer being updated per time point, but is updated in the relax_disp target function in one go.
- Math-domain catching for model: NS CPMG 2-site expanded. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These can be found via the --numpy-raise function to the system tests. To make the code look clean, the class object "back_calc" is no longer being updated per time point, but is updated in the relax_disp target function in one go.
- Math-domain catching for model CR72. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These can be found via the --numpy-raise function to the system tests. The skipping of test when num_points > 0, is a bad implementation. If such a case should show, it is best to catch the wrong input for the calculations. This is best done with a check before running the calculations.
- Math-domain catching for model TSMFK01. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These can be found via the --numpy-raise function to the system tests. To make the code look clean, the class object "back_calc" is no longer being updated per time point, but is updated in the relax_disp target function in one go.
- Math-domain catching for model TP02. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These can be found via the --numpy-raise function to the system tests. To make the code look clean, the class object "back_calc" is no longer being updated per time point, but is updated in the relax_disp target function in one go.
- Math-domain catching for model TAP03. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These can be found via the --numpy-raise function to the system tests. To make the code look clean, the class object "back_calc" is no longer being updated per time point, but is updated in the relax_disp target function in one go.
- Math-domain catching for model DPL94. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These can be found via the --numpy-raise function to the system tests. To make the code look clean, the class object "back_calc" is no longer being updated per time point, but is updated in the relax_disp target function in one go.
- Math-domain catching for model TAP03. Another check for division with 0 inserted.
- Math-domain catching for model MP05. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These can be found via the --numpy-raise function to the system tests. To make the code look clean, the class object "back_calc" is no longer being updated per time point, but is updated in the relax_disp target function in one go.
- Math-domain catching for model IT99. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These can be found via the --numpy-raise function to the system tests. To make the code look clean, the class object "back_calc" is no longer being updated per time point, but is updated in the relax_disp target function in one go.
- Removed class object "back_calc" being updated per time point for model LM63. Task #7793 Speedup of dispersion models. To make the code look clean, the class object "back_calc" is no longer being updated per time point, but is updated in the relax_disp target function in one go.
- Math-domain catching for model M61. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These can be found via the --numpy-raise function to the system tests. To make the code look clean, the class object "back_calc" is no longer being updated per time point, but is updated in the relax_disp target function in one go.
- Math-domain catching for model MMQ CR72. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These can be found via the --numpy-raise function to the system tests. To make the code look clean, the class object "back_calc" is no longer being updated per time point, but is updated in the relax_disp target function in one go.
- Align math-domain catching for model CR72 with trunk implementation. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. The catching of errors have to be more careful.
- Align math-domain catching for model DPL94 with trunk implementation. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. The catching of errors have to be more careful.
- Align math-domain catching for model IT99 with trunk implementation. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. The catching of errors have to be more careful.
- Align math-domain catching for model LM63 with trunk implementation. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. The catching of errors have to be more careful.
- Align math-domain catching for model M61 with trunk implementation. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. The catching of errors have to be more careful.
- Align math-domain catching for model MP05 with trunk implementation. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. The catching of errors have to be more careful.
- Align math-domain catching for model TAP03 with trunk implementation. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. The catching of errors have to be more careful.
- Align math-domain catching for model TP02 with trunk implementation. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. The catching of errors have to be more careful.
- Align math-domain catching for model TSMFK01 with trunk implementation. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. The catching of errors have to be more careful.
- Removing unnecessary math-domain catching for model IT99. Task #7793 Speedup of dispersion models. The denominator is always positive.
- Align math-domain catching for model NS CPMG 2-site expanded with trunk implementation. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. The catching of errors have to be more careful.
- Modified unit tests demonstrating edge case 'no Rex' failures of the model NS CPMG 2-site expanded. This is to align with the current return of data in the disp_speed branch. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0.
- Added 7 unit tests demonstrating edge case 'no Rex' failures of the model DPL94. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0.
- Unit test _lib/test_ns_cpmg_2site_expanded.py copied to _/test_lm63.py. They are both of CPMG type.
- Added 7 unit tests demonstrating edge case 'no Rex' failures of the model LM63. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0.
- Unit test _lib/_dispersion/test_ns_cpmg_2site_expanded.py copied to _lib/_dispersion/b14.py. They are both of CPMG type, and can be re-used.
- Added 7 unit tests demonstrating edge case 'no Rex' failures of the model B14. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0.
- Removed unnecessary math domain checking in model B14. They are slowing down the code. There is now protection for edge cases, and a last final check, before returning values. That should be sufficient.
- Unit test _lib/_dispersion/test_b14.py copied to _lib/_dispersion/test_CR72.py. They are both of CPMG type, and can be re-used.
- Copied unit test _lib/_dispersion/* to be reused for other models.
- Added 8 unit tests demonstrating edge case 'no Rex' failures of the model CR72. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0; kex = 1e5.
- Added the 8th unit tests demonstrating edge case 'no Rex' failures of the model B14. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0; kex = 1e5.
- Added the 8th unit tests demonstrating edge case 'no Rex' failures of the model LM63. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0; kex = 1e20.
- Small fix for 8 unit tests demonstrating edge case 'no Rex' failures of the model 'ns cpmg_2site_expanded'. The comparison of R2eff is now divided into a special case for kex having large values.
- Deleted unit test case for lm63 3site.
- Added 8 unit tests demonstrating edge case 'no Rex' failures of the model M61. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0; kex = 1e20.
- Added the 8th unit tests demonstrating edge case 'no Rex' failures of the model DPL94. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange:
- Added 8 unit tests demonstrating edge case 'no Rex' failures of the model M61b. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0; kex = 1e20.
- Math-domain catching for model M61b. Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These can be found via the --numpy-raise function to the system tests. To make the code look clean, the class object "back_calc" is no longer being updated per time point, but is updated in the relax_disp target function in one go.
- Modified script to be able to run system test Relax_disp.xxx_test_m61b_data_to_m61b.
- Added 8 unit tests demonstrating edge case 'no Rex' failures of the model IT99. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0; kex = 1e19.
- Added 9 unit tests demonstrating edge case 'no Rex' failures of the model MMQ CR72. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0; kex = 1e5; ΔωH = 0.0.
- Added 8 unit tests demonstrating edge case 'no Rex' failures of the model MP05. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0; kex = 1e20.
- Added 8 unit tests demonstrating edge case 'no Rex' failures of the model TAP03. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0; kex = 1e20.
- Added 8 unit tests demonstrating edge case 'no Rex' failures of the model TP02. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0; kex = 1e20.
- Added 7 unit tests demonstrating edge case 'no Rex' failures of the model TSMFK01. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0.
- Copied unit test test_b14.py to test_ns_cpmg_2site_3d.py.
- Added 8 unit tests demonstrating edge case 'no Rex' failures of the model NS CPMG 2-site 3D. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0; kex = 1e7.
- Modified unit tests demonstrating edge cases 'no Rex' failures of the model TP02. The catching of errors for off-resonance R1ρ models was implemented wrong. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This was pointed out in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5938. This is to implement catching of math domain errors, before they occur. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0; kex = 1e5.
- Critical fix for the math domain catching of model TP02. The catching of errors for off-resonance R1ρ models was implemented wrong. This was pointed out in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5938.
- Modified unit tests demonstrating edge cases 'no Rex' failures of the model DPL94. This was pointed out in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5938.
- Modified unit tests demonstrating edge cases 'no Rex' failures of the model MP05. The catching of errors for off-resonance R1ρ models was implemented wrong. This was pointed out in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5938. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models. This is to implement catching of math domain errors, before they occur.
- Critical fix for the math domain catching of model MP05. The catching of errors for off-resonance R1ρ models was implemented wrong. This was pointed out in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5938.
- Modified unit tests demonstrating edge cases 'no Rex' failures of the model TAP03. The catching of errors for off-resonance R1ρ models was implemented wrong. This was pointed out in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5938. And post http://article.gmane.org/gmane.science.nmr.relax.devel/5944. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models.
- Critical fix for the math domain catching of model TAP03. The catching of errors for off-resonance R1ρ models was implemented wrong. This was pointed out in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5938. And post http://article.gmane.org/gmane.science.nmr.relax.devel/5944.
- Modified unit tests demonstrating edge cases 'no Rex' failures of the model MMQ CR72. This was pointed out in post http://article.gmane.org/gmane.science.nmr.relax.devel/5940. And in post http://article.gmane.org/gmane.science.nmr.relax.devel/5946. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models.
- Small fix for the math domain catching of model MMQ CR72. This was pointed out in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5940. And in post http://article.gmane.org/gmane.science.nmr.relax.devel/5946.
- Various spacing fixes in unit test files _lib/_dispersion. This is the preparation for merging back disp_speed branch into trunk. This follows post http://article.gmane.org/gmane.science.nmr.relax.devel/5948. Usin the code validator script './devel_scripts/code_validator'.
- Modified that unit tests having different r20a and r20b values is checking if the correct one is returned. This is the preparation for merging back disp_speed branch into trunk. This follows post http://article.gmane.org/gmane.science.nmr.relax.devel/5948.
- Modified unit test to have standard population of pA = 0.95, and a correctly calculation of Δω in ppm to rad/s. This is related to Task #7793 Speedup of dispersion models.
- Small fix in parameter calculation in unit test _dispersion/test_ns_cpmg_2site_expanded.
- Increased max kex to value 1e18 for unit test of lin/ns_cpmg_2site_expanded.py.
- Increased max kex to value 1e20 for unit test of lib/ns_cpmg_2site_3d.py.
- Fix for looking for negative values, when all values where converted to positive in matrix in ns_cpmg_2site_3d.py. This is to implement catching of math domain errors, before they occur. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. This is related to Task #7793 Speedup of dispersion models.
- Removed nested looping of returning back_calc in lib/ns_cpmg_2site_3d.
- Removed the 8th unit test for model NS CPMG 2-site 3D. This was the catching of errors when kex = 1e20. The model cannot handle this situations, and we need to let it fail.
- Removed the 8th unit test for model NS CPMG 2-site expanded. This was the catching of errors when kex has high values. The model cannot handle this situations, and we need to let it fail.
- Fix for differences in system tests which are different from trunk. These were found with the command: diff -bur disp_speed/test_suite/ relax_trunk/test_suite/ | grep -v "Binary files" > diff.txt.
- Converting back to having back_calc as a function argument to model B14. This is to clean up the API. There can be bo no partial measures/implementations in the relax trunk. The problem is, that many numerical models can't be optimised further, since they evolve the spin-magnetisation in a matrix. That spin evolution can't be put into a larger numpy array. This is related to Task #7793 Speedup of dispersion models.
- Converting back to having back_calc as a function argument to model CR72: This is to clean up the API. There can be bo no partial measures/implementations in the relax trunk. The problem is, that many numerical models can't be optimised further, since they evolve the spin-magnetisation in a matrix. That spin evolution can't be put into a larger numpy array. This is related to Task #7793 Speedup of dispersion models.
- Converting back to having back_calc as a function argument to model DPL94: This is to clean up the API. There can be bo no partial measures/implementations in the relax trunk. The problem is, that many numerical models can't be optimised further, since they evolve the spin-magnetisation in a matrix. That spin evolution can't be put into a larger numpy array. This is related to Task #7793 Speedup of dispersion models.
- Converting back to having back_calc as a function argument to model IT99: This is to clean up the API. There can be bo no partial measures/implementations in the relax trunk. The problem is, that many numerical models can't be optimised further, since they evolve the spin-magnetisation in a matrix. That spin evolution can't be put into a larger numpy array. This is related to Task #7793 Speedup of dispersion models.
- Converting back to having back_calc as a function argument to model LM63: This is to clean up the API. There can be bo no partial measures/implementations in the relax trunk. The problem is, that many numerical models can't be optimised further, since they evolve the spin-magnetisation in a matrix. That spin evolution can't be put into a larger numpy array. This is related to Task #7793 Speedup of dispersion models.
- Converting back to having back_calc as a function argument to model M61: This is to clean up the API. There can be bo no partial measures/implementations in the relax trunk. The problem is, that many numerical models can't be optimised further, since they evolve the spin-magnetisation in a matrix. That spin evolution can't be put into a larger numpy array. This is related to Task #7793 Speedup of dispersion models.
- Converting back to having back_calc as a function argument to model M61b: This is to clean up the API. There can be bo no partial measures/implementations in the relax trunk. The problem is, that many numerical models can't be optimised further, since they evolve the spin-magnetisation in a matrix. That spin evolution can't be put into a larger numpy array. This is related to Task #7793 Speedup of dispersion models.
- Converting back to having back_calc as a function argument to model MMQ CR72: This is to clean up the API. There can be bo no partial measures/implementations in the relax trunk. The problem is, that many numerical models can't be optimised further, since they evolve the spin-magnetisation in a matrix. That spin evolution can't be put into a larger numpy array. This is related to Task #7793 Speedup of dispersion models.
- Converting back to having back_calc as a function argument to model MP05: This is to clean up the API. There can be bo no partial measures/implementations in the relax trunk. The problem is, that many numerical models can't be optimised further, since they evolve the spin-magnetisation in a matrix. That spin evolution can't be put into a larger numpy array. This is related to Task #7793 Speedup of dispersion models.
- Converting back to having back_calc as a function argument to model NS CPMG 2-site expanded. This is to clean up the API. There can be bo no partial measures/implementations in the relax trunk. The problem is, that many numerical models can't be optimised further, since they evolve the spin-magnetisation in a matrix. That spin evolution can't be put into a larger numpy array. This is related to Task #7793 Speedup of dispersion models.
- Converting back to having back_calc as a function argument to model TAP03. This is to clean up the API. There can be bo no partial measures/implementations in the relax trunk. The problem is, that many numerical models can't be optimised further, since they evolve the spin-magnetisation in a matrix. That spin evolution can't be put into a larger numpy array. This is related to Task #7793 Speedup of dispersion models.
- Converting back to having back_calc as a function argument to model TP02. This is to clean up the API. There can be bo no partial measures/implementations in the relax trunk. The problem is, that many numerical models can't be optimised further, since they evolve the spin-magnetisation in a matrix. That spin evolution can't be put into a larger numpy array. This is related to Task #7793 Speedup of dispersion models.
- Converting back to having back_calc as a function argument to model TSMFK01. This is to clean up the API. There can be bo no partial measures/implementations in the relax trunk. The problem is, that many numerical models can't be optimised further, since they evolve the spin-magnetisation in a matrix. That spin evolution can't be put into a larger numpy array. This is related to Task #7793 Speedup of dispersion models.
- Created the lib.compat.norm() compatibility function for numpy.linalg.norm(). For numpy 1.8 and higher, the numpy.linalg.norm() function has introduced the 'axis' argument. This is an incredibly fast way of determining the norm of an array of vectors. This is used by the frame order analysis. However for older numpy versions, this causes the frame order analysis, and many corresponding system and GUI tests to fail. Therefore this new lib.compat.norm() function has been designed to default to numpy.linalg.norm() if the axis argument is supported, or to switch to the much slower numpy.apply_along_axis(numpy.linalg.norm, axis, x) call which is supported by older numpy.
- The frame order analysis now uses the lib.compat.norm() replacement for numpy.linalg.norm(). This is to allow for the axis argument on numpy versions before version 1.8, though these older versions will result in slower optimisation of the frame order models.
- The built in Python range() function is no longer being replaced by xrange(). Replacing builtin.range() with builtin.xrange() on Python 2 was causing problems with Python site-packages which were not Python 3 compliant. This includes old numpy versions. The original overwriting of range() with xrange() was for both speed and memory conservation. However profiling the system tests, the time for all tests did not change significantly. This change may cause problems in certain places in relax on memory constrained computer systems, so it may need to be reverted in the future.
- The lib.io.open_write_file() function now automatically determines the compression type. This is used by many user functions which create files. The end result for a user is that if they supply a '.gz' or '.bz2' file extension, a gzipped or bzipped file will be produced.
- Removal of the docstring text wrapping in the lib.io module.
- Expanded and improved the docstring for the relax_disp.r20_from_min_r2eff user function. This follows from http://thread.gmane.org/gmane.science.nmr.relax.devel/5957. The documentation now covers a number of the uses for this user function. The text has also been lightly edited. To fit all the text into the GUI user function window, the size of the dialog and the text high settings have been changed.
- Large improvements for the detection of cross-compilation on Mac OS X systems. The tests for different architecture support now follows the ideas discussed in the post http://thread.gmane.org/gmane.science.nmr.relax.devel/5785/focus=5820. In summary, for each architecture a simple C file is created, compiled with 'gcc -arch xyz', and the resultant binary file tested. To support 64-bit compilation on 32-bit systems, all previously successful architectures are also included in the gcc command. The change allows the 'ppc64' architecture to be reintroduced.
- Fixed the docstring for the det_arch() method of the sconstruct script. This is for the true cross-compilation detection on Mac OS X.
relax 3.2.1
- Punctuation fixes throughout the CHANGES document.
- Modified system test Relax_disp.test_cpmg_synthetic_ns3d_to_cr72 to catch bug #22017: LinAlgError, for all numerical CPMG models. System test was renamed from test_cpmg_synthetic_cr72 to test_cpmg_synthetic_ns3d_to_cr72, to reflect which model create the data and which model fits the data.
- Modified cpmg_synthetic script to first create all time structures before doing back-calculation. Bug #22017: LinAlgError, for all numerical CPMG models. The numerical models need all time points which are defined in setup to be present when calculating.
- Renamed system test to test_cpmg_synthetic_ns3d_to_cr72_noise_cluster. The model that creates the data has been changed to numerical model. Bug #22017: LinAlgError, for all numerical CPMG models.
- Implemented system test Relax_disp.test_cpmg_synthetic_ns3d_to_b14. Bug #22021: model B14 shows bad fitting to data. This is to catch model B14 showing bad fitting behaviour.
- Parameter precision increase for system test Relax_disp.test_baldwin_synthetic. The correct implementation of the trigonometric functions allow for higher precision. Bug #22021: model B14 shows bad fitting to data. Duplicate line codes were also removed.
- Code cleanup in system test Relax_disp.test_baldwin_synthetic_full. Bug #22021: model B14 shows bad fitting to data. The precision could also be increased by 1 digit.
- Code cleanup in system test Relax_disp.test_baldwin_synthetic. Bug #22021: model B14 shows bad fitting to data. Removing many unnecessary lines of code.
- Added 7 unit tests demonstrating edge case 'no Rex' failures of the NS CPMG 2-site expanded model. This follows from the ideas in the post http://article.gmane.org/gmane.science.nmr.relax.devel/5858. These tests cover all parameter value combinations which result in no exchange: Δω = 0.0; pA = 1.0; kex = 0.0; Δω = 0.0 and pA = 1.0; Δω = 0.0 and kex = 0.0; pA = 1.0 and kex = 0.0; Δω = 0.0, pA = 1.0, and kex = 0.0. Such tests should be replicated for all dispersion models.
- Created the Structure.test_bug_22069_structure_delete_helix_attribute system test. This is to catch bug #22069, the failure of the structure.delete user function with "AttributeError: Internal instance has no attribute 'helices'".
- Created the Structure.test_bug_22070_structure_superimpose_after_deletion system test. This is to catch bug #22070, the failure of the structure.superimpose user function after deleting atoms with structure.delete.
- Added some checks to the Structure.test_bug_22070_structure_superimpose_after_deletion system test. These tests reveal the real problem - that the atoms of the second model have not been removed by the structure.delete user function.
- Added git-svn support for the relax version information module. This allows the subversion revision number and repository URL to be displayed on program startup, so that it is stored in log files. This is very useful for debugging purposes.
- Improvements for the git-svn support in the relax version module. Python 3 is now correctly handled and the URL is properly extracted from the git repository.
- Improvement for the unit test printouts when run with the --time command line option. The full unit test name is now printed out, reverting to the old behaviour. However the shortened test names are preserved for the other test suite categories.
- Created the test_ns_cpmg_2site_expanded_no_rex8() relaxation dispersion unit test. This is a demonstration, showing the NS CPMG 2-site expanded model with no exchange when kex = 1e5. I.e. when the motion is too fast for exchange to be observed. This test should be used for all dispersion models to make sure that they model this edge case correctly as well. This follows from http://article.gmane.org/gmane.science.nmr.relax.devel/5906.
- Attempt at fixing bug #22071, the relax unit test and system test not functioning. The fix here is that the git commands to show the current subversion revision number only works when run from the relax base directory, or one of the subdirectories. This should now be fixed, as the pipe running the command will first 'cd' to the relax base directory.
- Another attempt at fixing bug #22071, the relax unit test and system test not functioning. This time the complicated shell command "cd %s; git svn find-rev $(git rev-parse HEAD)" has been replaced with "cd %s; git svn info".
- Changed most default dispersion parameter values to avoid edge cases where there is no exchange. The Δω parameters were all 0.0 and kex 1e5, both of which result in no exchange. If this is ever used for an optimisation starting point - which it never should, apart from development, test suite, and debugging purposes - then the optimisation algorithm will have a very hard time recovering. The pA parameter has been changed to 0.90 to set it to a reasonable value while still staying far away from the no exchange condition of pA = 1.0. This follows from http://article.gmane.org/gmane.science.nmr.relax.devel/5917.
- Fixes for 3 dispersion system tests for the change in default parameter values. The default values are used in the auto-analysis in the test suite to avoid the grid search. The changed values affected the optimisation of two spins from Flemming Hansen's data located at test_suite/shared_data/dispersion/Hansen/, residue 4 used as an example of no exchange and residue 70 used as an example where data is only available at one field. The system test Relax_disp.test_set_grid_r20_from_min_r2eff_cpmg was also modified as it was directly checking these default values.
- Fix for the Relax_disp.test_cpmg_synthetic_dx_map_points system test. This uses the default parameter values to start the optimisation, therefore the recent change away from edge case 'no Rex' values allows the parameter values stored in ds.dx_clust_val to be correctly optimised.
- Speed up for the version module when using a repository copy of the code. The repository revision and URL and now stored as module variables, so that the 'svn info' and 'git svn info' commands are only run twice, once for the revision() function and once for the url() function.
- Large speed up for the relax start up times for svn and git-svn copies of the relax repository. The 'svn info' and 'git svn info' commands are now only executed once when the version module is first imported. The revision() and url() functions have been merged into the repo_info() function and this is called when the module is imported. This repo_info() function stores the repository revision and URL as the version.repo_revision and version.repo_url module variables. It also catches if these variables are already set, so that multiple imports of the module do not cause the repository information to be looked up each time. Previously the revision() and url() functions where called every time a relax state or result file was created, hence for repository copies the 'svn info' or 'git svn info' commands were being called each time. The functions were also called for each interpreter object instantiated, and for each import of the version module.
relax 3.2.0
- Shifted two functions from pipe_control.angles into the new lib.geometry.angles module. This is the fold_spherical_angles() and wrap_angles() functions which are not related to the relax data store and hence can be made independent.
- Replaced function atan(ω1 / Δω) with atan2(ω1 , Δω), to make sure returned θ values are between 0 and π. This was done in the function return_offset_data() in the specific_analyses of relax_disp. This was discussed in: http://thread.gmane.org/gmane.science.nmr.relax.devel/5210.
- Changed a unit test and system test, where a change from the atan to atan2 function to calculate θ can give differences to the 15 decimal.
- Replaced how a global analysis average results from a previous run to instead take the median. This is to prevent averaging extreme outliers, and instead take the median of the previous result. This was discussed in: https://mail.gna.org/public/relax-devel/2013-10/msg00009.html.
- Modified system test Relax_disp.test_r1rho_kjaergaard to use input guess values of φex in units of ppm2 instead of rad2/s2.
- Small change to system test Relax_disp.test_r1rho_kjaergaard. The outcome of kex from system test is in the area of 4-5000. The expected value is 13000. A deeer analysis of the input is needed, to judge what is the correct value.
- Created the Structure.test_bug_21814_pdb_no_80_space_padding system test. This is for catching bug #21814, the PDB reading failure when the PDB records are not padded to 80 spaces. The PDB file used for the test is the same file as attached to the bug report.
- The verbosity flag is now used in the centre of mass calculations. The pipe_control.structure.mass.pipe_centre_of_mass() function now passes the verbosity argument into the lib.structure.mass.centre_of_mass() function.
- Created the new vector_angle() library function. This is located in the lib.geometry.vectors module. The function will calculate the angle between two vectors with sign or direction using the atan2() function.
- Addition of a number of unit tests for the new lib.geometry.vectors.vector_angle() function.
- Changes to the lib.geometry.vectors.vector_angle() function. This now expects the normal of the plane in which the angle is defined. The original logic was not functional, therefore the angle is forced to be negative if the cross product between the two vectors points in the opposite direction as the normal.
- Improvements for the log converter script. This is for the script used to convert SVN messages into a format for the relax release announcement. The script now handles spacing better. Multi-line messages are now concatenated into a single line using a double space between separate sentences and a single space in all other cases.
- Improvements for the pipe_control.mol_res_spin.generate_spin_id_unique() function. The unique spin ID now takes into account if the molecule is named or not (for single molecules). This allows the function to be used when dealing with the structural data rather than the molecule, residue, and spin data structure.
- Removed the full stop from the printout of the test names in the test suite. This allows for quicker copying and pasting of the test name when running with the --time option and then selecting a single test to run.
- Modified the Noe.test_noe_analysis system test to catch bug #21863, the failure to create the ref and sat Grace 2D plots in the NOE analysis.
- Improved the user feedback when executing a user function in the GUI. The busy cursor is now turned on at the start of the user function wizard page method _apply() and turned off again at the end. This would avoid user confusion, thinking that the program has frozen (as was the case in bug #21862).
- Changed the Noe.test_noe_analysis system test to handle the peak intensities correctly. This relates to bug #21863, the grace.write user function not being able to write ref/sat plots as described in sample script noe.py. Instead of trying to produce the 'ref.agr' and 'sat.agr' files for the non-existent 'ref' and 'sat' parameters, instead the 'intensities.agr' file is being produced for the peak intensity parameter. The reference and saturated intensities will appear as two graph sets within that plot.
- Changed the Noe analysis sample script to properly handle the peak intensity Grace plots. This relates to bug #21863, the grace.write user function not being able to write ref/sat plots as described in sample script noe.py. Instead of trying to produce the 'ref.agr' and 'sat.agr' files for the non-existent 'ref' and 'sat' parameters, instead the 'intensities.agr' file is being produced for the peak intensity parameter. The reference and saturated intensities will appear as two graph sets within that plot. These changes match those of the test suite.
- Fix for the line numbering for the NOE analysis sample script in the user manual. The line numbering for the code snippets did not match that of the full sample script shown at the start of that section of the NOE chapter.
- Added a simple shell script to quickly grep the entire source tree while excluding .svn directories. This will only work on POSIX systems (Linux and Macs).
- Fix for the Noe.test_bug_21562_noe_replicate_fail system test. The 'ref' and 'sat' parameters do not exist. Therefore the grace.write user function calls in the system test script have been modified to output the 'intensities' parameter instead.
- Complete rearrangement of the specific analysis code for the steady-state NOE. This brings the code into line with the recent specific analysis code rearrangements, specifically in the specific_analyses.relax_disp package.
- Changed the Noe auto-analysis to properly handle the peak intensity Grace plots. This relates to bug #21863, the grace.write user function not being able to write ref/sat plots as described in sample script noe.py. Instead of trying to produce the 'ref.agr' and 'sat.agr' files for the non-existent 'ref' and 'sat' parameters, instead the 'intensities.agr' file is being produced for the peak intensity parameter. The reference and saturated intensities will appear as two graph sets within that plot.
- Redesign and standardisation of the peak intensity data structure throughout all analyses in relax. The various structures 'intensities', 'intensity_err', 'intensity_sim', 'sim_intensity', and 'intensity_bc' have all been renamed. The new structures are called 'peak_intensity', 'peak_intensity_err', 'peak_intensity_sim' and 'peak_intensity_bc'. This allows the structure to be processed as a standard parameter in the specific analysis API. One very visible consequence is that plots of peak intensities, as well as value files, will now have peak intensity errors. For backwards compatibility, the relax data store method _back_compat_hook() has been modified to catch all previous peak intensity object variants and to standardise and rename these to the new object names. As the parameter is now called 'peak_intensity' rather than 'intensities', all calls to the grace.write and value.write for this parameter have been changed in the auto-analyses, the sample scripts, the test suite and the manual.
- Fix for the Noe.test_noe_analysis system test. The grace plots of the peak intensities now have error bars.
- The legends in Grace plots are now turned on by default, if the legend flags are not specified. The Noe.test_noe_analysis system test has been updated for the change.
- Added matplotlib detection to the dep_check module. This follows step 1 from the planning document at http://thread.gmane.org/gmane.science.nmr.relax.devel/5278.
- Added matplotlib to the info module. This follows step 1 from the planning document at http://thread.gmane.org/gmane.science.nmr.relax.devel/5278.
- Modified the python_multiversion_test_suite.py script to run the relax information printout. This is to test out the info module on multiple Python versions and to have a record of the setup of each Python version.
- Python 3 fixes for the info module. The new processor_name() function was not compatible with Python 3 as the text read from STDOUT needs to be 'decoded'.
- The variables in the relax_fit.h file are now all static.
- Added the new exp_mc_sim_num argument to the relaxation dispersion auto-analysis. This is in preparation for fixing bug #21869. This argument allows for a different number of Monte Carlo simulations for the R2eff model when exponential curves are fit. It will mainly be useful in the test suite to improve the accuracy of the R2eff errors, while still running a low number of simulations for the other models to allow optimisation to be quick.
- Modifications to the Relax_disp.test_m61_exp_data_to_m61 system test. This is to fix bug #21869, the failure of this system test. The number of Monte Carlo simulation for the R2eff model has been increased from 3 to 25 using the new exp_mc_sim_num argument to the dispersion auto-analysis. To keep the test fast, only a single spin is optimised.
- Redesign and major clean up of the specific_analyses.jw_mapping package. The code has been broken up into separate modules.
- Fix for the default value table documentation in the specific_analyses.jw_mapping package. This was broken in the last commit.
- Updates for the rest of relax for the redesign of the specific_analyses.jw_mapping package.
- Redesign and major clean up of the specific_analyses.consistency_tests package. The code has been broken up into separate modules. This matches the similar specific_analyses.jw_mapping package.
- Redesign and major clean up of the specific_analyses.relax_fit package. The code has been broken up into separate modules. The rest of relax has been updated to handle the changes.
- Removed the empty documentation strings from the specific analysis API base class. These are being gradually shifted into the specific_analyses.*.uf modules, so do not belong in the API object.
- The specific analysis API classes are now all singletons. This change will reduce the amount of memory used, as these classes are initialised multiple times throughout relax, especially in the test suite. The API objects are not used for local storage so the multiple instance verses singleton design change will make no difference. The singleton design pattern code has been added to the base class specific_analyses.api_base.Api_base so that all classes inherit the __new__() method which implements the singleton.
- Shifted the NOE analysis specific user function documentation from the API object to the uf module.
- More code refactorisation of the specific_analyses.n_state_model package into new modules. The API object is now in the 'api' module, the remaining private methods have been shifted into the 'optimisation' and 'uf' modules, and the user function documentation moved to the 'uf' module.
- Added units tests for package consistency testing for all of the remaining specific analyses.
- Fixes for the unit tests for the N-state model specific analysis package changes.
- Updated the package __all__ lists for a number of the specific analyses.
- Shifted all of the private methods for optimisation from the relaxation dispersion API object. These are now functions of the specific_analyses.relax_disp.optimisation module.
- Created the new specific_analyses.relax_disp.uf module. This consists of the private methods of the relaxation dispersion API object which act as the back end for the user functions, as well as the user function documentation, all shifted from the 'api' module.
- Shifted the model-free analysis specific API object to the specific_analyses.model_free.api module.
- Fixes for the new specific_analyses.model_free.api module.
- Created the new specific_analyses.model_free.uf module. This consists of the private methods from the 'main' module which act as the back end for the user functions as well as the user function documentation.
- Created the new specific_analyses.model_free.parameters module. This consists of the private methods from the 'main' and 'mf_minimise'. All class methods have been converted into functions.
- Created the new specific_analyses.model_free.optimisation module. This consists of the merger of the 'mf_minimise' and 'multi_processor_commands' modules. All the private class methods have been converted into functions.
- Shifted all of the model-free specific analysis API methods into specific_analyses.model_free.api.
- Clean up and refactoring of the specific_analyses.model_free.bmrb module. The class methods have all been converted into functions, the deleted class is no longer a base class for the specific analysis API class.
- The read_columnar_results() method has been removed from the specific analysis API. This is only for backwards compatibility with ancient relax 1.2 and earlier model-free results files, so will never be used by any other analysis.
- Converted all of the class methods in specific_analyses.model_free.results to functions. This class has been removed from the API as well.
- Renamed specific_analyses.model_free.results to back_compat. This is to make the purpose of the module clearer, to avoid developer confusion.
- Shifted the model-free classic_style_doc user function documentation to the 'uf' module.
- Shifted the last private method out of the model-free specific analysis API class. It has been converted into a function of the new 'data' module, for lack of a better name.
- Shifted some of the specific_analyses.model_free.parameters functions into the new 'model' module.
- Removed the test_grid_ops() method from the specific analysis API. This has been shifted into the new lib.optimisation module and converted into a function, breaking a number of circular import kludges.
- Fixes for the specific analysis API unit tests. The 'instance' variable used for the singleton design pattern is skipped in the method and object checks.
- Redesign of the specific analysis API. All parts of relax using this API now work with the API objects directly. The specific_analyses.setup module has been renamed to specific_analyses.api and the get_specific_fn() function has been eliminated. Instead of calling this, the different parts of relax now obtain the API object by calling the new return_api() function. This results in a large cleanup of the API - method names are no longer changed to a different name.
- Fix for the new singleton design of the specific analysis API objects. The use of the class namespace as a storage space has been eliminated. This was causing test suite failures when checking the API objects. For some reason, some of the target function objects were being placed in 'self'.
- Created a directory for holding the CaM double rotor frame order synthetic data.
- Capitalised the pivot and CoM variables in the base frame order distribution generation script.
- Reintroduced the distribution PDB file creation to the frame order test data generation script. This is the generate_base.py script in the test_suite/shared_data/frame_order/cam directory. The ability to create the distribution.pdb file was long lost in this script, and can now be activated using the DIST_PDB class variable.
- The Frame Order test data generation base script now loads all structures before rotating them. This allows the progress printout to function correctly by not having any user function printouts as the rotations are occurring.
- Created a simple double rotor geometric system to used for this frame order test data generation. The system_create.py script creates the geometric system based on the CoMs of both domains in the parent directory and two perpendicular rotation axes passing through both CoMs. A PDB file of the representation is created by the script.
- Improvements and expansion of the frame order test data generation base script. More of the class variables are now defined in this base class and dummy methods are provided to allow certain operations to be skipped (print_axis_system(), axes_to_pdb() and build_axes()). Importantly, the script can now handle multiple modes of motion with the introduction of the key _multi_system() and _state_loop() methods.
- Fixes for the calculation of the frame order matrix in the test data generation base script. The matrix generation now handles multiple modes of motion correctly. The total rotation matrix is constructed when looping over the modes by using the dot product of the individual rotation to the total, and then this is used to create the outer product, summed over all states.
- The frame order test data generation base script now outputs the frame order matrix to 8 places.
- Introduced the ROT_FILE flag to the frame order test data generation base script. This allows the 'rotations.bz2' file creation to be skipped, if set to False. This file takes time to create and is of limited use.
- Removed a duplicated state.save call in the frame order test data generation base script.
- The save file created by the frame order test data generation base script can now be bypassed. When loading 1,000,000 PDB structures as models into the relax data store, the RAM usage can go over 10 Gb. When trying to save this into a relax state file with the state.save user function, the time required can be over a day. Therefore the SAVE_STATE class variable has been introduced to allow the state.save call to be bypassed.
- Created the RDC and PCS back calculated test data for the CaM double rotor frame order model. This consists of a uniform distribution over both rotors, the first centred in the C-domain and the second in the N-domain, and the two axes being perpendicular to each other along the CoM-CoM axis. The distribution consists of 250000 rotated structures. The frame order matrix for this model is also given.
- Created a distribution of structures for the CaM double rotor frame order model. This is only for a distribution of 100 structures, to keep the file size to a reasonable size. A PyMOL *.pse file is also included to show the distribution together with the rotor system and the domain positions.
- Updated the rotation() method of all the CaM frame order test data generation scripts. The motion_index argument is now accepted by all of the methods to allow the base script to execute correctly.
- Fix for the Frame_order.test_generate_rotor2_distribution system test. The rotation() method now must accept the motion_index keyword argument.
- Created the Frame_order.test_cam_double_rotor system test for the CaM synthetic data. This will be used to implement the frame order double rotor model.
- The CaM double rotor frame order test RDC data now has single quotes around the spin IDs. This allows the data to be loaded in the Frame_order.test_cam_double_rotor system test.
- Created subsets of the CaM double rotor frame order test PCS data. This consists of data for only 5 spins, and matches those of the other CaM frame order test data.
- Large refactorisation of the frame order package. The private methods of the frame order package specific_analyses.frame_order have now all been shifted into modules. This is to simplify the package by not having huge quantities of code in the __init__ module. Now the code resides in the api, checks, data, optimisation, parameters, and user_functions modules.
- Added the double rotor frame order model to the frame_order.select_model user function.
- Better support for the parameters of the double rotor frame order model.
- Initial implementation of the double rotor frame order model target function. The target function func_double_rotor() has been created as a copy of the func_rotor_qrint() method, modified for the double rotor model. Modifications will likely be needed as the compile_2nd_matrix_double_rotor() and pcs_numeric_int_double_rotor() functions are implemented.
- Initial implementation of the lib.frame_order.double_rotor module. This module implements the functions needed to solve the frame order analysis for the RDC (via the frame order matrix) and PCS (numerically). The interfaces have been updated for the double rotor but most of the code still implements the basic rotor model from which it derives.
- Fix for the double rotor frame order model when only RDCs are used. The target function was not being aliased when no PCS data was present.
- Changed the precision of the deactivated Frame_order.test_cam_double_rotor_pcs system test. This test will run with the command "relax -s Frame_order.test_cam_double_rotor_pcs" and, because of the small angle of the test model, the chi-squared value differences for just the PCS were too small for the previous precision of 1 decimal place.
- The double rotor system is now truly perpendicular. This is for the CaM frame order synthetic test data. The two axes were not perpendicular whereas for the model they should be.
- Updated the double rotor distribution PDB file for the perpendicular axes. This is for the CaM frame order double rotor synthetic data. The number of structures in this distribution is set to 100 (10 per motional mode). The PyMOL *.pse file has also been updated.
- Updated the CaM frame order double rotor synthetic test data for the perpendicular axes. The RDC and PCS data has been recalculated for 250,000 structures, this time with the axes being truly perpendicular.
- Added a simple script for analysing the eigensystem of the CaM frame order double rotor test model.
- Capitalised the class variables of all of the CaM frame order system test scripts.
- Class variable cleanup for the CaM frame order system test scripts. The variables are now all defined in the base script and only overwritten when needed by the individual tests.
- Changed the handling of the pivot point in the CaM frame order system tests. The pivot point is now a class variable, rather than being hardcoded into a function. The handling of a second pivot has also been added.
- Updated the CaM frame order double rotor system test script to have the correct two pivots.
- Changes to the frame_order.pivot user function. The 'order' argument has been added to allow for multiple pivots to be present. The user function backend will store these as cdp.pivot, cdp.pivot2, cdp.pivot3, etc. The 'fix' argument is now defaulting to False to make sure it is always boolean.
- The second pivot is now being passed into the frame order target function class.
- Simplified the CaM frame order system test base script. The class variables are now always defined, so checking for their existence is pointless. The CONE_S1 is now also defined in the base script as a class variable.
- Added support for the new axis_alpha frame order parameter to the specific_analyses.frame_order package.
- Implemented the new frame order rotor model parameters in the target function. The parameters {axis_theta, axis_phi} have been replaced by the single axis_alpha. To support the new model construct, the CoM of the entire system is now passed into the target function.
- The AXIS_ALPHA parameter is now initialised in the CaM frame order system test base script. The base script was broken a while back due to AXIS_ALPHA not being defined but being checked for.
- Improvements for the centre of mass calculation for the frame order model optimisation. This is now only calculated for the rotor models. The CoM is also printed out for better user feedback.
- The CaM frame order system tests for the rotor models are converted to the new axis_alpha parameter. The axis_theta and axis_phi spherical coordinates are converted to the new reduced parameter set defined by a random point in space (the CoM of all atoms), the pivot point, and a single angle α.
- The CaM frame order system test base script is now using lib.geometry.vectors.vector_angle(). This is for correctly calculating the α axis angle for the rotor models.
- Fixes for the rotor axis α angle conversion in the CaM frame order system test base script. The pivot point is now the point on the rotor axis closest to the reference point (the CoM). Therefore the closest point is now calculated from the pivot point on the axis and the axis vector. This closest point is needed for defining the new minimal parameter set for the rotor models.
- Changes for the convert_rotor() method of the CaM frame order system test base script. The method now sets the α angle rather than returning it. The method now also resets the pivot point to the point on the rotation axis closest to the CoM.
- Fixes for the rotor axis reconstruction in the func_rotor_qrint() frame order target function. This is for the rotor model. The axis α angle is now correctly converted into the rotor axis using the CoM and pivot point.
- Optimisation is now turned on for the Frame_order.test_cam_rotor2 system test. This is to reveal deficiencies in the handling of the new axis α parameter.
- The frame order optimisation results unpacking function now supports the axis α parameter. This is in the function specific_analyses.frame_order.optimisation.unpack_opt_results().
- Updated the χ2 value check in some of the CaM frame order system tests for the rotor model. The χ2 value is slightly different due to truncation and conversion artifacts of the parameter set reduction.
- Shifted all of the code for calculating the frame order rotor axis into lib.frame_order.rotor_axis. The new frame_order.rotor_axis module consists of three function for creating a unit vector or the rotor axis using either the axis α angle, the two spherical angles or the three Euler angles.
- Renamed the specific_analyses.frame_order.user_functions module to uf.
- Fix for the optimised chi-squared value check in the Frame_order.test_cam_rotor system test. The reduced parameter set results in a slightly different χ2 value.
- Shifted the frame order average domain position info check from the 'optimisation' to 'checks' module.
- Fix for the CaM frame order system tests. The axis α angle and pivot shifting to the closest point to the CoM in the base system test script now only happens for the 'rotor' and 'free rotor' models. This allows the tests for the isotropic cone models to pass again.
- Fixes for all of the CaM frame order optimisation scripts in the test data directories. The frame_order.average_position user function is now essential.
- The centre of mass printout in the frame order target function setup now uses the verbosity argument. This means that the printout is not shown for the Monte Carlo simulation optimisation.
- Correction for the νCPMG to τCPMG conversion formula in the dispersion chapter of the manual. In relax, the conversion νCPMG = 0.25 * τCPMG is used and not νCPMG = 0.5 * τCPMG.
- Merged the Van't Hoff and Arrhenius lines of the dispersion software comparison table of the manual.
- Renamed the specific_analyses.relax_disp.disp_data module to specific_analyses.relax_disp.data. This is to match the module naming convention used in the other specific analyses, and as detailed in the post http://thread.gmane.org/gmane.science.nmr.relax.devel/5294.
- Updated all of the frame order optimisation scripts for the CaM test suite data. These simple testing scripts were very much out of date and non-function for the current code. Half of the code in these scripts is now implemented in the concise frame_order.pdb_model user function.
- Updated the ancient test_suite/shared_data/frame_order/cam/rotor2/pcs_only/frame_order.py script. This now matches the script of its parent directory.
- Simplified all of the CaM frame order optimisation testing scripts. These are for the synthetic test suite data. The unnecessary class structure of the scripts has been eliminated.
- The frame_order.pivot user function can now be used to turn the pivot optimisation on and off. If the pivot point is not given, this user function will now just set the fixed flag and nothing else, allowing the optimisation status of a pre-set pivot to be changed.
- Added the axis α angle to the frame order return_units() API method.
- The frame order axis α angle is now defined in the grid search from -π to π.
- Replaced the 'elif' statements with 'if' in the frame order update_model() function. This is to avoid possible future bugs as the logic was not consistent.
- Renamed the specific_analyses.api_objects module to parameter_object to better reflect what it is. This contains a single object for the parameter list object and therefore does not need to be generalised for additional types of objects for the specific analysis API.
- Updated the module docstring of specific_analyses.parameter_object to match its purpose.
- Created a parameter list object for the relaxation dispersion analysis. Instead of using the parameter list object from the base class, the dispersion analysis now defines its own.
- Docstring improvements for the add_min_data() parameter list base class method.
- Created two new parameter list methods from the relaxation dispersion code. The add_model_info() and add_peak_intensity() base class methods have been created from the relaxation dispersion code. These are just aliases for setting up a number of parameters via add() in a standard way.
- The frame order specific analysis API object is now truly a singleton. This should help eliminate some bugs.
- Standardised all of the parameter list objects for the specific analyses. All of the specific_analyses packages now contain a parameter_object module which defines all of the parameters. The ordering of these is now consistent between the analyses, the result of which will be more consistent ordering of element in the relax XML state files. The new Param_list.add_csa() base class method has been added to standardise the CSA parameter. And the capabilities of the add_model_info() method has been expanded.
- The parameter list objects in the specific analysis API are now singletons. This has no immediate benefit as these classes are only instantiated once. But it will allow for efficient reuse of these objects in the future and for expansions of the specific analysis API.
- The frame order pivot points are now stored differently in the current data pipe. Instead of being stored as a list or array of numbers in cdp.pivot, the point is now stored as cdp.pivot_x, cdp.pivot_y and cdp.pivot_z. The second pivot cdp.pivot2 is now stored as cdp.pivot_x_2, cdp.pivot_y_2 and cdp.pivot_z_2. This is to simplify the automated handling of optimisation parameters. Rather than having to convert the pivot_x, pivot_y, and pivot_z parameters to and from a list, the same mechanisms can now be used for all of the optimised frame order parameters. This will be used to hugely simplify many of the functions in the specific_analyses.frame_order.parameters module and eliminate a large source of bugs.
- Temporary deactivation of the Frame_order.test_cam_double_rotor system test.
- Huge simplification of the specific_analyses.frame_order.parameters.assemble_param_vector() function. The parameters are now assembled in a generic way by looping over cdp.params. The simpler code should also be faster.
- Huge simplification of specific_analyses.frame_order.parameters.param_num(). This now simply calls update_model() and then returns the length of cdp.params.
- Clean up of the specific_analyses.frame_order.parameters module. The unused and terribly designed assemble_limit_arrays() function has been deleted. And unused imports have been removed.
- Simplification of the specific_analyses.frame_order.optimisation.unpack_opt_results() function. Looping over the cdp.params parameter list is now used to minimise the amount of replicated code.
- The frame order analysis is now using the special frame order parameter object.
- Elimination of the specific_analyses.frame_order.checks.check_rdcs() function. This function duplicates the functionality of pipe_control.rdc.check_rdcs() while not being as comprehensive. Switching to the pipe_control.rdc version minimises the amount of code in the frame order analysis, decreasing the potential for bugs.
- Simplified the assemble_scaling_matrix() frame order function. The data_type argument no longer does anything, so has been eliminated.
- Clean up of the base_data_types() frame order function and it use. The propagation of the data type list around the frame order code is now greatly reduced. And the alignment tensors and NOESY data have been removed from the base_data_types() function - these are not used.
- Docstring fixes for the frame order specific analysis API object. A number of the methods were referring to the base data as being alignment tensors, but this has changed to RDCs and PCSs a long time ago.
- Clean up and fixes for the frame order model_statistics() API method. The number of data points 'n' was incorrectly calculated using the original alignment tensor base data.
- Eliminated the specific analysis API object base __init__() method. This is no longer needed as the parameter list object is now analysis specific and set up by each analysis type separately. The calls to this method from the derived classes have therefore also been deleted.
- Shifted the frame order specific API deselect() method into the Api_common base class. The method has been renamed to _deselect_global() and extended to handle Monte Carlo simulations.
- The specific API PARAMS object is now private. Apart from fixing a number of unit tests, these aliased singletons should not be accessed by the rest of relax.
- Created the specific analysis API common method _is_spin_param_false(). This simply returns False. The is_spin_param() frame order method has been deleted and this common method is now used instead.
- Replaced the frame order specific API model_loop() method. The base method _model_loop_single_global() is used instead.
- Replaced the frame order API model_type() method with the base _model_type_global() method. The two methods were identical anyway.
- Fixes for the units of the ave_pos_x, ave_pos_y, and ave_pos_z frame order parameters.
- Removed the frame order API return_units() method. This method has been superseded by the parameter list object.
- Added the PCS and RDC as parameters for the frame order and N-state model analyses. These are now defined in the respective parameter list objects. The base method add_align_data() has been created to avoid code duplication.
- Eliminated the last of the specific analysis API return_units() methods. This functionality is now provided by the parameter list object.
- Eliminated the model-free specific analysis API data_type() method. This functionality is now provided by the parameter list object.
- Converted the N_state_model.test_5_state_xz system test to use a new way to set parameters. Instead of using pseudo-parameters for the value.set user function such as 'p0', 'p1', etc. for the probabilities, which are then converted into the 'probs' parameter with the index taken from the name, instead the index is now directly given. The value.set user function will need to be modified to handle this. The aim is to standardise the parameter list object for the N-state model analysis.
- Converted the remaining N-state model system tests to use the new value.set index argument.
- Converted all of the N-state model parameters to use the parameter list object. The default_value(), return_data_name() and return_grace_string() API methods have also been deleted as these have been superseded by the parameter list object.
- Clean up of the N-state model user function docstrings. The pseudo-parameter names such as 'p0', 'p1', etc. no longer exist.
- The new index argument for the value.set user function now defaults to zero. This is for backwards compatibility as the default value of None was not handled by the user function backend.
- Fix for one of the value.set user function unit tests. The 'alpha2' N-state model parameter no longer exists, and the '2' is now supplied as index=2.
- Shifted the core of the data_names() specific analysis API method into the parameter list object.
- Renamed many of the specific analysis parameter list object methods to match the API names. This is to prepare for a decoupling of the parameter list object from the API object.
- Updated the relaxation dispersion citation for relax as this is now officially published.
- All of the add*() methods of the parameter list object have been made private. This is to prepare the object to be accessible to the rest of relax, so that it can be decoupled from the specific API object.
- Shifted the minimisation Grace strings and units into the parameter list object. The return_grace_string() and return_units() functions of the pipe_control.minimise module have been deleted and their contents shifted into the specific analysis parameter list object.
- Simplified the pipe_control.minimise.minimise() function. The specific API object only needs to be fetched once.
- Eliminated the return_data_name() concept from the specific analysis API. The parameter names can now only have one value, i.e. 's2' is different from 'S2'. In addition, a number of related functions have been deleted form the pipe_control.minimise module as these are now handled by the parameter list object. The deleted functions are return_conversion_factor() and return_value().
- Shifted the Brownian rotational diffusion tensor parameters into the parameter list object. This only affects the model-free analysis. The pipe_control.diffusion_tensor module functions default_value(), return_conversion_factor(), return_data_name() and return_units() have been eliminated. These functions have been merged together with the diffusion parameter self._add() calls in the model-free specific parameter list into the new parameter list base class _add_diffusion_params() method. To allow the model-free analysis code to differentiate between diffusion and model-free parameters, the new scope() parameter list base class method has been created. Diffusion parameters return 'global' whereas model-free parameters return 'spin'. The model-free specific API methods default_value() and is_spin_param() have been deleted as these are now provided fully by the parameter list object. The is_spin_param() method has been newly implemented in the parameter list object to check the parameter scope.
- Eliminated a lot of unused code from the pipe_control.align_tensor module. This includes the functions data_names(), default_value(), map_bounds(), map_labels(), return_conversion_factor(), return_data_name() and return_units() as well as the unused and very old user function documentation __default_value_prompt_doc__, __return_data_name_prompt_doc__ and __set_prompt_doc__. These are all remnants from the origin of the module - the copying of the diffusion_tensor module. But they have never been used.
- Changed the values of the set argument for the parameter list object. The 'generic' value has been renamed to 'fixed' and is now for all permanently fixed parameters of the model - for example the CSA value in a number of analyses. The default set argument value of the _add() method has been changed to 'all' so that any parameters registered via that method are not placed in a special set (unless specified otherwise).
- Clean up and fixes for the parameter definitions in the consistency testing analysis. The fixed and calculated parameters are now defined in the correct sets, and the description for tc has been expanded and improved.
- Added the ability to automatically create the parameter tables for the user function documentation. These are the tables used in many of the user function docstrings. This has been added to the parameter list base class. The section title is pre-specified by the new _set_uf_title() method, and the table caption and LaTeX label by the _set_uf_table() method. The documentation is generated by calling the uf_doc() method. This uses the new type_string() method to add a compact parameter type string representation to the table. The aim is to eliminate all of the hard-coded tables in the specific analyses which are always very quickly outdated. By automatically creating the tables, this simplifies the codebase and simplifies the addition of new analysis types.
- The parameter tables are now properly initialised in all of the specific analyses. This will allow the tables to now be used in the user function documentation.
- The auto-generated user function tables can now display the base units.
- Spacing fix for one of the diffusion tensor parameter descriptions.
- The label and caption for the parameter list user function documentation is now supplied to uf_doc(). This allows different types of tables to be generated, for example the default value is useful for the value.set user function but not value.write, while allowing tables to still be shared.
- Expanded the steady-state NOE parameter description.
- Expanded the reduced spectral density mapping parameter descriptions.
- The default scope for the parameter list object uf_doc() method is now 'spin'. Most of the parameter tables are for setting spin parameters, so this will minimise code.
- Fixes for the specific analysis parameter list singleton object. These objects are now really singleton objects and are only initialised once.
- Fixes for some of the NOE system tests - the NOE parameter description is now different.
- Shifted the user function documentation creation into the parameter list objects. The uf_doc() method will now return the pre-created documentation object, and the original base class method for creating the documentation has been renamed to _uf_param_table().
- Shifted all of the user functions to use the auto-generated parameter tables. All of the specific analysis default_value_doc and return_data_name_doc documentation objects have been deleted and replaced with the auto-generated ones. This results in a big code clean up and removes synchronisation issues with the user function documentation quickly becoming out of date when parameters change.
- Expansion of the dx.map user function documentation. This now includes tables of the N-state model and relaxation dispersion parameters. A new auto-generated model-free parameter table including the diffusion parameters has been created and is now used instead of the separate diffusion tensor and model-free parameter tables.
- Deleted the diffusion tensor __return_data_name_doc__ documentation object. This is no longer used, being redundant with the new parameter list objects.
- The frame order parameter tables for the user function documentation are now created.
- The dx.map user function documentation now included the frame order parameters.
- Different parameter sets can now be specified when creating the parameter tables. This is for the analysis specific parameter list objects and the auto-generated user function documentation.
- Clean up of the grace.write user function documentation. The minimisation statistics table has been removed and instead the minimisation statistics are included in the parameter tables of the specific analyses, when appropriate.
- Code clean up - deleted the return_data_name_doc and set_doc pipe.control.minimise objects. These user function documentation objects are no longer used. They were also extremely out of date.
- Created the parameter list object base class _uf_doc_loop() method. This will be used to loop over all or subsets of the user function documentation parameter tables.
- The model-free parameter setting documentation has been shifted into the parameter list object. As the text was quite out of date, it has been updated to the current relax design.
- The J(w) mapping parameter setting documentation has been shifted into the parameter list object. This has also been updated to reflect the current design of relax.
- The consistency testing parameter setting documentation has been shifted into the parameter list object. This has also been updated to reflect the current design of relax.
- The relaxation dispersion parameter setting documentation has been shifted into the parameter list object. The documentation has also been rewritten as it originates from Sebastien Morin back in 2009 and is now very much out of date.
- Deleted the relaxation curve-fitting parameter setting documentation. This really didn't say anything.
- The N-state model parameter setting documentation has been shifted into the parameter list object.
- Updated the two_domain.py N-state model sample script. The value setting for the N-state model is now handled differently.
- More updates of the N-state model sample scripts for the value.set user function changes.
- Deleted the diffusion tensor parameter setting documentation from the value.set user function. These values have not been able to be set by the value.set user function for over half a decade. Therefore this documentation can only lead to user confusion.
- Deletion of the user function documentation in the pipe_control.diffusion tensor module. The __default_value_doc__ and __set_doc__ documentation objects are out of date and no longer used anywhere in relax, so they have been eliminated.
- Shifted the model-free parameter writing documentation to the parameter list object.
- Rearranged the parameter table ordering in the value user functions. The order now better matches that of the chapters of the user manual and is consistent between the functions.
- More reordering of the parameter tables for the value user functions.
- Removed all of the prompt.doc_string.regexp_doc documentation objects from the user functions. This is the regular expression documentation which no longer has a purpose. It was for specifying multiple parameters simultaneously in user functions such as value.set, but this functionality has been removed.
- Created parameter tables with no additional trailing text. This is used in a few of the user functions.
- Updated the value.copy user function documentation for the frame order theory. The value.copy title has been changed to not be spin specific and a table of the frame order parameters has been added.
- Improvements for the value.display user function documentation. The N-state model parameter table has been removed as these parameters are not spin specific and cannot be used. And the title has been modified.
- Improvements for the value.read user function documentation. The N-state model parameter table has been removed as these parameters are not spin specific and cannot be read from a file. And the title has been modified.
- Updated the value.set user function documentation for the frame order theory. The value.set title has been changed to not be spin specific and a table of the frame order parameters has been added. The spin ID documentation has also been rewritten.
- Changed the title in the value.write user function documentation.
- Changed the title for the value user function class.
- Docstring update for the relaxation dispersion linear_constraints() function.
- The pivot point x, y and z coordinates are now registered as parameters of the frame order analysis. These are stored as the parameters pivot_x, pivot_y and pivot_z.
- Docstring fix in the relaxation curve-fitting linear_constraints() function.
- Converted the status.escalate variable into module variables for lib.errors and lib.warnings. This variable is set by the command line flag '-e' or '--escalate'. By converting it into a module variable, the lib.errors and lib.warnings warnings are now independent of relax.
- Created the lib.warnings.TRACEBACK variable. When True, this will cause stack-traceback to be printed out with the warning. This is to decouple the traceback printout from the warning to error escalation.
- Created the new '-r' or '--traceback' relax command line option. If supplied, stack tracebacks will be shown for all RelaxWarnings and RelaxErrors. This allows for finer debugging control.
- Clean up of the debugging command line options. The debug flag now will cause stack tracebacks to be printed on all RelaxWarnings.
- Created the '--error-state' command line option for saving a pickled state when a RelaxError is raised. This gives greater control of a powerful feature added to relax by Chris MacRaild. The pickled state can then be attached to bug reports or can be used to quickly load the state prior to failure when in the scripting UI mode.
- Reordered the debugging command line options and removed the '-r' shortcut.
- The lib.errors module is now really independent of relax - the compat module is no longer used. Instead, the Python 2 and 3 versions of the pickle module are imported using try statements.
- Decreased the amount of newlines around the printout from the '--error-state' command line option.
- Improved support for printing stack tracebacks with RelaxWarnings. The '--traceback' command line option will now show a full traceback. A replacement warnings.showwarning() function has been written to write out the traceback before the warnings.formatwarning() replacement function is called.
- Divide by zero avoidance fix for the rotor frame order model module lib.frame_order.rotor.
- Removed the dependency on the relax dep_check module from the relax library. This is to further decouple the library from relax.
- Added a script for testing the independence of the relax library.
- Removal of all unused imports in the lib.dispersion package.
- Improvements to the test_library_independence.py development script. This script for checking the independence of the relax library will now recursively import all packages and modules in the library and report at the end a list of all failures.
- Shifted the Python 2 and 3 compatibility module 'compat' into the relax library.
- Shifted the pipe_control.sequence.validate_sequence() function into the relax library. For this, the new lib.sequence module has been created. This change is for better library independence. A circular import with lib.io and lib.arg_check has also been resolved.
- Shifted the read_spin_data() and write_spin_data() functions from lib.io to lib.sequence.
- Removed the dependence on the relax 'dep_check' module from the lib.frame_order package. This is for more independence of the relax library.
- Added the missing Bioinformatics journal to the bibtex file journal name aliases.
- Huge clean up of all unused imports in relax. These were found using the find_unused_imports.py development script. A number of these changes significantly decrease the possibilities of circular imports appearing in the future. And this also makes the relax library more independent from the rest of relax.
- Shifted the data_store.relax_xml module into the relax library as lib.xml. This module contains a couple of functions which are used for converting Python objects into an XML representation and back again. These are used not only by the relax data store, but also a number of the structural objects in the relax library (which are themselves placed in the relax data store). This makes the relax library more independent from the rest of relax.
- Shifted many of the pipe_control.structure.geometric functions into the relax library. All but two functions from the pipe_control.structure.geometric module are independent of the relax data store. These have been shifted into the new lib.structure.geometric module. This removes most of the remaining relax dependencies in the relax library.
- Removed the automatic axis labelling in the lib.software.grace.write_xy_header() function. This is the automatic labelling based on the parameter Grace strings and units of the specific analysis type. This is now preformed by the specific analyses themselves so the automatic code is not needed or used. This allows the dependence on the pipe_control.pipes module and the specific analysis API to be removed making the relax library now 100% independent from the rest of relax.
- Editing of the relax command line option descriptions.
- Created a new test category for the relax test suite - the software verification tests. This is part of the full test suite or can be run by itself using the new --verification-tests command line option. Such tests are best described by https://en.wikipedia.org/wiki/Verification_and_validation_%28software%29. These tests will be used to make sure that the design aims of the relax source code are satisfied. For example that the relax library is independent from the rest of relax. Or that the package __all__ lists actually contain all modules and sub-packages (these tests are currently part of the unit tests).
- Shifted the relax library independence developer script into the software verification tests. The functionality of the devel_scripts/test_library_independence.py script is now within the Library.test_library_independence software verification test. Therefore the script has been deleted.
- Updated the text for the software verification tests in the test suite.
- The relaxation dispersion auto-analysis now outputs the R20, R2A0, R2B0, and R1ρ0 parameters. This includes both text files and 2D Grace plots.
- Python 3 fix for one of the old scripts in the test suite directories.
- Improved error messages for when the GUI is launched but the wxPython installation is broken. Now the case of a broken wxPython installation is handled rather than just a missing installation. The dep_check module will store the import error message, and relax will now report that back to the user.
- Python 2.5 and 2.6 compatibility for the Library.test_library_independence verification test. The importlib package is not available in these Python versions, but the code in the Python 2.7 library file importlib/__init__.py is compatible all the way back to Python 2.3. Therefore the importlib functions have been copied directly into the system test script and the importlib dependency removed.
- Updated one of the OMP model-free results files for the different ordering of parameters in the XML. The changes to the parameter setup for the model-free analysis means that the XML files are now ordered differently.
- Fix for the Test_data.test_count_relax_times_r1rho relaxation dispersion unit test for Python 3.2+. The '%s' representation of floating point numbers is different on these Python versions - the number of decimal places used are different by default.
- Added Python 3.4 support to some of the development scripts.
- Added 4 more relaxation dispersion system tests to the blacklist for when C modules are missing. This allows these 4 tests to be skipped in the system test rather than failing with "RelaxError: The exponential curve-fitting C module cannot be found.".
- Changed the backward compatibility hook for old state files for the spectrometer frequency. The behaviour has been changed so that the data pipe structure spectrometer_frq_list is now sorted. This simply allows a number of tests to pass on Python 3.3+, a user would not notice any differences.
- Fixes for two relaxation curve-fitting system tests for Python 3.3+. These are the Relax_fit.test_curve_fitting_height and Relax_fit.test_curve_fitting_volume system tests which fail due to accuracy differences and a bad call to the UnitTest method assertEqaul() which should have been an assertAlmostEqual() call.
- Added the matplotlib module to the Python binary and module seeking script.
- Added dataset for system test. System test for CPMG dataset, (http://dx.doi.org/10.1073/pnas.0907387106) Kaare Teilum, Melanie H. Smith, Eike Schulz, Lea C. Christensen, Gleb Solomentseva, Mikael Oliveberg, and Mikael Akkea 2009 SOD1-WT at 25 C.
- Added system test to analyse data. System test for CPMG dataset, (http://dx.doi.org/10.1073/pnas.0907387106) Kaare Teilum, Melanie H. Smith, Eike Schulz, Lea C. Christensen, Gleb Solomentseva, Mikael Oliveberg, and Mikael Akkea 2009 SOD1-WT at 25 C.
- The debugging command line option no longer turns on RelaxWarning tracebacks. These tracebacks can be separately turned on with the --traceback command line option.
- Made name for system test shorter and moved data to shorter folder name. Regarding bug #21953, weird performance of grid search.
- Modified system test for cleaner implementation of tests. Regarding bug #21953, weird performance of grid search.
- Lowered range for grid search by factor 10 for kex to now between 1-10000. Regarding bug #21953, weird performance of grid search.
- Changes to system test Relax_disp.test_hansen_cpmg_data_auto_analysis. Regarding bug #21953, weird performance of grid search. The grid search needed to be increased by +1 and lowering of some results by one digit.
- Lowering of precision in Relax_disp.test_hansen_cpmg_data_auto_analysis_numeric. Regarding bug #21953, weird performance of grid search.
- Changes to system test Relax_disp.test_hansen_cpmg_data_auto_analysis_r2eff. Regarding bug #21953, weird performance of grid search. The grid search needed to be increased by +1 and lowering of some results by one digit.
- Changes to system test Relax_disp.test_hansen_cpmg_data_missing_auto_analysis. Regarding bug #21953, weird performance of grid search. The grid search needed to be increased by +1 and changes of some results.
- Modified system test Relax_disp.test_sod1wt_t25_to_cr72. Regarding bug #21953, weird performance of grid search.
- Modified Δω and kex in system test Relax_disp.test_tp02_data_to_tap03. Regarding bug #21953, weird performance of grid search.
- Split system test Relax_disp.sod1wt_t25_to_cr72 into part as setup and test part. Regarding bug #21953, weird performance of grid search.
- Started implementation of error analysis bug. Regarding bug #21954, Order of spectrum.error_analysis is important.
- Small edit of the relax command line option descriptions.
- Undid the modification of Δω and kex in system test Relax_disp.test_tp02_data_to_tap03. Regarding bug #21953, weird performance of grid search. The number of iterations needed to be increased from 2000 to 2500 to allow the values to be found.
- Further extended system test Relax_disp.test_sod1wt_t25_bug_21954_order_error_analysis. Regarding bug #21954, order of spectrum.error_analysis is important.
- Extended --gui-tests Relax_disp.test_hansen_trunc_data. Regarding bug #21954, order of spectrum.error_analysis is important. To catch errors in this dataset.
- This time the blacklisted relaxation dispersion system tests have been correctly reduced. Only one blacklisted test did not require the C modules to be compiled.
- Shifted all of the dispersion model descriptions and parameter lists to the variables module. The descriptions and parameter lists which were part of the relax_disp.select_model user function backend have been shifted into the specific_analyses.relax_disp.variables module as MODEL_DESC_* and MODEL_PARAMS_* variables. The descriptions have also all been standardised. The MODEL_DESC and MODEL_PARAMS dictionaries have also been created to hold all of the descriptions and parameters in one place.
- The General.test_bug_21720_pipe_switching_with_tab_closure GUI test now works without compiled C modules.
- Updated the release checklist for the new minfx version 1.0.6 release. See https://web.archive.org/web/gna.org/forum/forum.php?forum_id=2456 and https://freecode.com/projects/minfx.
- Fixes for the specific API _set_param_values_spin() method for lists and dictionaries. This is for the value.set user function to allow it to handle parameters of different types. For example the R2 parameter in the relaxation dispersion analysis. This API common method now sets all dictionary elements, list elements, or the variable to the given value.
- Created the new specific_analyses.relax_disp.variables.PARAMS_R20 list. This variable is a list of all R20 parameters of the dispersion models. It has been shifted out of the parameters module.
- Created a relaxation dispersion specific API set_param_values() method. This originates from the base _set_param_values_spin() method from the api_common module. The method has been extended to handle the R20 parameter types - generating the current dictionary keys as needed.
- Expanded the relaxation dispersion auto-analysis to allow the grid search to be turned off. By setting the grid_inc argument to None, the grid search will be turned off. As a replacement, the value.set user function is used for all model parameters to set them to their default values prior to minimisation. This design is for speed as optimisation from the defaults is often - though not always - good enough. It can be used, for example, in the test suite to make the system tests much faster.
- Changed the default R20 relaxation rate from 15 to 10 rad.s-1. This is probably closer to the average rate expected for molecules studied by NMR.
- The R2eff dispersion parameter now also defaults to 10 rad.s-1.
- Expanded the dispersion specific API set_param_values() method for the R2eff and I0 parameters. This now sets these parameter values correctly if the value sent into the method is not composed of dictionaries.
- Large speed up of the relaxation dispersion system tests by about 20%. This was achieved by turning the grid search off in the following system tests: Some of the optimisation values are slightly different, or completely different for the one example of the CR72 model fitted to no exchange, and these have been updated in the tests.
- Changed the bounds for the R20 parameters in the default grid search. The range of 1 to 40 rad.s-1 was previous used. This has been narrowed to 5 to 20.
- Added function to find minimum R2eff value to set as R20 value before grid search. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value.
- Added system test for setting R20 from minimum R2eff before grid search. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value. System test: -s Relax_disp.test_sod1wt_t25_set_grid_r20_from_min_r2eff.
- Extended api value.set to use index in value setting. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value. The index used is expected to match the spectrometer frequency.
- Added user function relax_disp.set_grid_r20_from_min_r2eff. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value.
- Modified system test to use user function instead. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value.
- Added relax_disp.set_grid_r20_from_min_r2eff functionality to the relax dispersion auto_analyses. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value.
- Fix for skipping grid search, when set parameter values are of dict() type. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value.
- Extended system test for -s Relax_disp.test_sod1wt_t25_set_grid_r20_from_min_r2eff. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value. The system test now both test the creation of the correct values, the running of grid_search, and the auto_analysis.
- Added True/False button to activate relax_disp.set_grid_r20_from_min_r2eff in auto-analyses. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value.
- Set the verbosity=1, since the output is minimal. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value.
- Fix for non-existing dictionary keys causing errors. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value.
- Fix for setting index=None, when setting default values for parameters. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value.
- Parameter values pre-set to 0.0 is now skipped in grid_search. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value.
- Renamed system test to reflect what it is testing. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value.
- Better formatting of text in user function. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value.
- Python 3 fix. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value.
- Better wording of experimental feature in GUI tooltip. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value.
- An additional warning paragraph has been added to the user function. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value.
- Fix for system test Relax_disp.test_set_grid_r20_from_min_r2eff_cpmg. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value. Fixed values for testing was added.
- Improved the error reporting from the Library.test_library_independence verification test.
- Fix for setting the pre-set values in grid_search. Support request #3151, user function to set the R20 parameters in the default grid search using the minimum R2eff value. Now test that values which are of dictionary types, has more than 0 values.
- Modified system test Relax_disp.test_sod1wt_t25_to_cr72.
- Added a paragraph to the clustering section of the dispersion chapter covering parameter copying. This explains the purpose of the relax_disp.parameter_copy user function.
- Created system test to catch the error -s Relax_disp.test_sod1wt_t25_to_sherekhan_input. Bug #21995: creating sherekhan input files, with data for several fields and different time_T2.
- Removed the necessity that len(cdp.relax_time_list) = 1 when issuing the sherekhan input user function. Bug #21995: creating sherekhan input files, with data for several fields and different time_T2.
- Made testing of files for system test -s Relax_disp.test_sod1wt_t25_to_sherekhan_input. Bug #21995: creating sherekhan input files, with data for several fields and different time_T2. Warning, the sherekhan user function will write to current directory.
- Added "dir" as input to the user function relax_disp.sherekhan_input in system test. Bug #21995: creating sherekhan input files, with data for several fields and different time_T2.
- Modified the relax_disp.sherekhan_input to accept dir as input. Bug #21995: creating sherekhan input files, with data for several fields and different time_T2.
- Turning off local dir writing in system test and set the correct time_T2. Bug #21995: creating sherekhan input files, with data for several fields and different time_T2.
- Fix for letting ShereKhan user function write the time_T2 correct. Bug #21995: creating sherekhan input files, with data for several fields and different time_T2.
- Fix for correct looping over time points, when creating ShereKhan files. Bug #21995: creating sherekhan input files, with data for several fields and different time_T2.
- Added check for number of time points is 1. Bug #21995: creating sherekhan input files, with data for several fields and different time_T2.
- Added model MODEL_B14 to system test Relax_disp.test_hansen_cpmg_data_auto_analysis_r2eff. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales.
- Added MODEL_B14 to specific_analyses.relax_disp.variables. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales.
- Further added info for MODEL_B14 to specific_analyses.relax_disp.variables. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales.
- Added B14 description to the relax_disp.select_model user function front end. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales.
- Added model B14 to be found as target function. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales.
- Added empty b14.py to relax library lib/dispersion/b14.py. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales.
- Extended docstring in b14.py file. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales.
- Implemented start system test for model B14. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. System test is Relax_disp.test_baldwin_synthetic.
- Added Baldwin model B14 test data. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales.
- Removed MODEL_B14 to be tested in normal setup. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This is to allow the system test to pass.
- Removed the standard transparent "on" setting in grace images script file. This was rather an annoyance than helpful.
- Made a generic script to generate R2eff data for a CPMG model based on spin parameters, and fit the data. Still needs to implement some noise method. 1) The idea is to generate R2eff data with a numerical model with some extreme parameters. 2) Then add noise to the R2eff data. 3) Then fit with a analytical model. Evaluate the performance on the analytical model. This follows the idea of the paper: http://dx.doi.org/10.1016/j.jmr.2014.02.023 "An exact solution for R2,eff in CPMG experiments in the case of two site chemical exchange" Andrew J. Baldwin, Journal of Magnetic Resonance, 2014. The script can be extended to also include global fitting, to test this out. The script is also ideal, when trying to implement a new model, since test-data is ready at hand.
- Docstring update for the test suite runner class - the verification tests are now listed.
- Added the software verification tests to the relax GUI. The verification tests can now be selected via the "Tools->Test suite->Verification tests" menu entry. Running the full test suite via the menus also now included the verification tests.
- Reordered the B14 model according to release year. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Adding_the_model_to_the_list.
- Redid ordering of model B14 according to release year. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Adding_the_model_to_the_list.
- Reordered the model B14 according to release year. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Adding_the_model_to_the_list.
- Reordered model B14 in target functions. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Adding_the_model_to_the_list.
- Python API documentation corrections for the model B14. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Adding_the_model_to_the_list.
- Replaced copyright notice for the Baldwin.py script. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Adding_the_model_to_the_list.
- Changed the compression back 9, when creating grace PNG files. It doesn't change the quality, just the time to create the file and the size of the file. PNG is lossless, so compression levels 1 to 9 are all pixel-perfect.
- Added a check for the existence of data pipes to the return_api() specific analysis function.
- Added a README file to the sample_scripts directory to help users understand what these scripts are for. It also explains how these scripts should be used.
- Implemented synthetic CPMG system test. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Adding_the_model_to_the_list.
- Small changes to synthetic script data generator. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Adding_the_model_to_the_list.
- Made synthetic CPMG script accept R2eff noise values as input.
- Added array with zero R2eff error to system test Relax_disp.test_cpmg_synthetic.
- Added a system test, which proves that small Δω values of 1, makes the minimisation goes wrong. This is for synthetic data with R2eff values of +/- 0.05, which is to be expected for real data.
- Added a row to the dispersion software comparison table for TROSY-type data. This follows from http://thread.gmane.org/gmane.science.nmr.relax.devel/5414/focus=5501.
- Added a row to the dispersion software comparison table for the support of scalar coupling effects. This follows from http://thread.gmane.org/gmane.science.nmr.relax.devel/5414/focus=5501.
- Added model B14 to the list of MODEL_LIST_NUMERIC_CPMG. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax. Model B14, uses the number of ncyc/CPMG blocks in its analytical equation. To pass this information correct and calculate the ncyc power, it should be in this list.
- Letting the error be 0.1 in the system test for B14. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax. This is just cosmetics, to make the dispersion graph look more beautiful.
- Implemented model B14 in the relax library. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_library. The code is raw implemented, with no optimisation. This is merely to test, that the spin parameters that created R2eff data, can be found again after grid search and minimisation.
- Correctly implemented the target function for model B14. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_target_function.
- Implemented system test "relax -s Relax_disp.test_baldwin_synthetic -d" for model B14. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging. This proves that the model is correctly implemented, and return same data which the Baldwin script created.
- Renamed the relax_disp.cpmg_frq user function to relax_disp.cpmg_setup and added some new options. This follows from the thread http://thread.gmane.org/gmane.science.nmr.relax.devel/5511/focus=5520. The ncyc_even option has been added so the user can specify if the pulse sequence requires an even number of CPMG blocks. This is for use in the interpolated dispersion curves, but could have other uses in the future.
- Removed model B14 to the list of MODEL_LIST_NUMERIC_CPMG. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax. This was not essential anyway.
- Changed the default value of pA, the population for state A, to 0.95. When doing a grid search in the auto-analysis, one can set "None". This will then use default values specified for parameters, instead of a grid search. pA is best to start at 0.95, than 0.5.
- Extended system test Relax_disp.test_baldwin_synthetic to also include a N15 synthetic dataset. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Added the synthetic N15 data for system test Relax_disp.test_baldwin_synthetic. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Modified system_tests/scripts/relax_disp/cpmg_synthetic.py and the corresponding system tests. Relax_disp.test_cpmg_synthetic_cr72. Relax_disp.test_cpmg_synthetic_cr72_full_noise_cluster. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Attempt to implement function map_bounds in API for relax_disp. Bug #22012: dx.map not implemented for pipe type relax_disp.
- Expanded the CR72 full dispersion model description in the manual to explain its origin. This was discussed at http://thread.gmane.org/gmane.science.nmr.relax.devel/5410. The equations used the Davis et al., 1994 simplified form, and this is now explained.
- Changed float powers of 2.0 to integer powers of 2, to speed up the calculations. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This change did not do a large change in speed, but is more proper. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Changed all instances of "r2e" with "r20b", to be consistent with relax nomenclature. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Changed all instances of R2g with r20a. This is to be consistent with the relax nomenclature. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Implemented g3 and g4 as square root functions instead of atan2. atan2 is always returning values between -π and π. https://docs.python.org/2/library/math.html. Next step is to convert g1>-g1, which will truly follow the CR72 Nomenclature. For this, the atan2 function is a blocker. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Had to lower the precision of system test Relax_disp.test_baldwin_synthetic. This was after changing g3, and g4 from atan2 functions, to square root functions. The model is still very precise though. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Altered the sign of g1, to follow CR72 Nomenclature. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Had to lower the precision of system test Relax_disp.test_baldwin_synthetic after sign change of g1. The model is still precise, finding the parameters which generated the data. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Made g2 use the CR72 parameter convention. No change detected, since the change will be erased by going to order2. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Made sign change of δR2, to use parameter convention of CR72. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Implemented the α minus shorting from CR72. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Pretty the code, making space between all multiplications "*". Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Pretty up the code, making space between "=". Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Pretty up the code, making space between all "-". Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Pretty up the code, making space between all "+". Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- More code clean up. Make it look pretty. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Pretty up code, by moving comments up on line. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Pretty up code. Remove trailing spaces. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Replaced expression with -alpha_. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Replaced numpy.XX functions, with just the function. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Replaced "power" with ncyc and made use of numpy power. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Pretty up code, removing multiple "(" and ")". Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Replaced Trel with relax_time, to use relax parameter conventions. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Replaced pb and pa with relax parameter pA. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Replaced keg with relax parameter normal use of kBA. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Replaced kge with kAB, which is relax convention. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Removed where kAB was subtracted with kAB. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Speedup of code, replacing repetitive calculations of Δω2. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Speedup, by removing repetitive calculations of g32. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Speedup, by removing repetitive calculations of g42. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Removed the specific API method aliasing in the pipe_control.opendx module. The API object is now instead aliased as self.api.
- Docsting fixes for some model_statistics() API methods, including the base class method.
- Rewrite of the rotor2 CaM test data optimisation script. This now handles the new rotor frame order model parameterisation. Two functions have been added for converting between the old and new parameters - alpha_angle() to calculate the new α parameter and shift_pivot() for shifting the pivot to the closest point to the CoM on the rotor axis.
- Changed how the rotor axis is calculated in the func_rotor() frame order target function. A new set of notations is now being used to try to solve a nasty α angle parameterisation bug.
- Updated the rotor2 CaM frame order test data optimisation script for the changed notation. A new set of notations is now being used to try to solve a nasty α angle parameterisation bug.
- Fixed the average position Euler angles for the rotor2 CaM frame order test data optimisation script. The angles needed to be reversed.
- Removed an duplicated χ2 printout in the rotor2 CaM frame order test data optimisation script.
- Speedup - made B14 use the pre-calculated inverse time, instead of calculating the inverse time inside the function. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Speedup - moved the repetitive calculations of pB, kBA and kAB out of the library function. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Speedup - moved the calculation of δR2 and alpha_m out of library function. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Pretty-up code. Re-ordered logic of R20 parameters, and exchange parameters in function call. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Moved Carver and Richards (1972) ζ and Ψ notation outside library function. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. Not sure, if this speeds the calculation up. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Speedup - made variable for the repetitive calculations of ζ2, and Ψ2. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Speedup - made "1" and "2" integers to float, to prevent Python conversion. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Speedup - repetitive calculations of 2.0 * tcp. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Speedup - moved g_factor: g = 1/sqrt(2) outside library function to be calculated once. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Speedup - repetitive calculations of sqrt_zeta2_Psi2 = sqrt(zeta2 + Psi2). Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Speedup - converted expressions of complex(x, y) to (x + y*1j). Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Split the func_B14 into full, with a calc function. This is to prepare for the splitting up of B14, into a full: R2A0 != R2B0, and "normal" which is R2A0 = R2B0. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Documentation fix for CR72 calc function.
- Renamed system test Relax_disp.test_baldwin_synthetic to Relax_disp.test_baldwin_synthetic_full. And changed model from B14 to B14 full. This is to help find where modifications now have to be changed. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Added B14_FULL to the lists of the specific_analyses.relax_disp.variables module. The model name is stored in a special variable which will be used throughout relax. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Adding_the_model_to_the_list.
- Added B14_FULL to the relax_disp.select_model user function front end. Added the model, its description, the equations for the analytic models, and all references to the relax_disp.select_model user function front end. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax##The_relax_disp.select_model_user_function_front_end.
- Added B14_FULL to the target function. The system test Relax_disp.test_baldwin_synthetic_full is now back and running. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_target_function.
- Implemented system test Relax_disp.test_baldwin_synthetic for the model B14, whereby the simplification R2A0 = R2B0 is assumed. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Added target function for the Baldwin (2014) 2-site exact solution model for all time scales, whereby the simplification R2A0 = R2B0 is assumed. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_target_function.
- Finished system test Relax_disp.test_baldwin_synthetic. This proves that model B14 whereby the simplification R2A0 = R2B0 is assumed is successfully implemented. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Added the synthetic data for B14 model whereby the simplification R2A0 = R2B0 is assumed. This is used in system test Relax_disp.test_baldwin_synthetic. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Added B14 and B14_FULL to the relax GUI. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_GUI
- Added the latex bibliography reference for the model B14. This is the reference for Baldwin (2014) B14 model - 2-site exact solution model for all time scales. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual.
- Added model B14 description in the manual. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual.
- Updated the references in the b14.py library file, to point to the wiki, and the future API and html documentation. The link to API and html documentation is to be updated for the future compilation of these. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual.
- Reinserted the library function of b14.py the calculation of: δR2 = R2A0 - R2B0; alpha_m = δR2 + kAB - kBA; ζ = 2 * Δω * alpha_m; and Ψ = alpha_m2 + 4 * kBA * kAB - Δω2. And put the g_fact = 1/sqrt(2), inside the library function. It made no sense to put these calculations outside the library, since there would be no skipping of a loop. It actually makes much better sense to keep these calculation in the library function, to preserve the possibility to import this module in other software. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Removed the pre-calculation of "zeta2 = zeta**2" "Psi2 = Psi**2" since it did not speed-up things. This power 2 of ζ and Ψ is only done once. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Used LaTeX subequations instead, and using R2eff parameter is defined in the relax.tex. Using the defined \Rtwoeff, \RtwozeroA, \RtwozeroB, \kAB, \kBA, \kex. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual.
- Fixes for all URLs in the HTML version of the relax manual. This fix will appear later at http://www.nmr-relax.com/manual/index.html once the next version of relax is released. The trick was to translate the \url{} LaTeX commands which are not recognised by latex2html into \htmladdnormallink{#1}{#1} commands using a htmlonly environment in the headers.
- The \bibitem command is no longer ignored when building the HTML version of the relax manual. This will allow the bibliography at http://www.nmr-relax.com/manual/Bibliography.html to be formatted in a reasonable way. And citations will have proper links to the entries in this file rather than the current behaviour of linking to itself, hence not going anywhere.
- Apostrophe fix in the LaTeX bibliography file. This will fix my name at http://www.nmr-relax.com/manual/Bibliography.html so that it is not displayed as d’Auvergne.
- Better latex2html support for the relax manual. The hyperlink command \href{}{} and inline bibliographic reference command \bibentry{} are now supported in the HTML version of the relax manual. These are translated into \htmladdnormallink{#2}{#1} and \citet{#1} command respectively, both of which are supported by latex2html. This will significantly improve the documentation at http://www.nmr-relax.com/manual/index.html.
- Made better notation of equation. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual.
- Changed manual, to the recipe at Appendix 1. This was changed after the wish of the author. Discussed in: http://thread.gmane.org/gmane.science.nmr.relax.devel/5632. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual.
- Changed that taucpmg = 1 / 4*nucpmg and not taucpmg = 1 / nucpmg. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual.
- Added model B14 to the list of dispersion models. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual.
- Relax manual fix for model TSMFK01. Added that the model is slow exchange.
- Fix for equation alignment for model B14. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual.
- Elimination of minus in library function b14.py. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Replaced f0 with F0, to follow paper and relax manual. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Replaced "ex0b" with "v1c" to follow paper and manual. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Replaced "ex0c" with "v1s" to follow manual and paper. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Replaced f2 with F2, to follow manual and paper. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Sqrt fix in manual for model B14. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Fix for ordering in calculation, to make it look prettier. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Replaced "v2pPdN" with v5, to follow paper and manual. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Replaved "oGt2" with "v4" to follow manual and paper. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Took inv_tcpmg outside parenthesis to follow manual. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Sign fix in manual. The 1/taucpmg was taken wrong outside parenthesis. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Replaced "t2" with "F1b" to follow paper. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Replaced "t1pt2" with "F1a_plus_b" for better reading. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Reorder of lines to follow appendix 1 in paper. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Rewrote lines to follow appendix 1 in paper. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Made expression according to appendix 1 in manual. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual.
- Replaced T_{\textrm{rel} with \taucpmg. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual.
- Very small speed-up. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Speedup by removing integer to float conversion part.
- Better latex2html support for the relax manual, specifically the dispersion software comparison table. The \yes and \no commands are now better processed as HTML, and the rotating package 'rotate' environment is replaced by nothing. This will improve the dispersion software comparison table at http://www.nmr-relax.com/manual/Comparison_dispersion_analysis_software.html.
- Fix for catastrophic parameter index error for model B14. The model B14 would get the same parameter index as B14 full, and would hence optimise wrong parameters. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Fix for model B14 making ugly graphs. The power of ncyc has to be an integer. Bug #22018: Model B14 creates ugly graphs ! Sig saw all over the place.
- Fix for model B14 full making ugly graphs. The power of ncyc has to be an integer. Bug #22018: Model B14 creates ugly graphs ! Sig saw all over the place.
- Fixes for the HTML version of the relax manual. The renewal of the \theequation command in the model-free and relaxation dispersion chapters was causing all equation numbers in latex2html to be broken. By placing these in a latexonly environment, the problem is avoided in the HTML version at www.nmr-relax.com/manual/.
- Changed script for synthetic CPMG data. This is to test the fitting of CR72 and B14, when creating R2eff data with numerical model: MODEL_NS_CPMG_2SITE_EXPANDED. This script is ideal for testing cases. One can readily define experiments settings: sfrq_X, time_T2_X, ncycs_X for simulating one or more spectrometer experiments. Spins can readily be set up, to have different dynamics, like: R2, R2A0, R2B0, kex, pA and Δω. The script can test clustering, and can convert to Sherekhan and make a hyper-dimensinal dx map to test χ2 hypersurface on parameter settings. It is also ideal for strees-testing relax, to see if its minimisation algorithm performs well. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Small improvement for generic CPMG data script file. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Added functionality of the visualising the spin dynamics point which generated the data. This is to the script, which can visualize the synthetic CPMG data. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Fix for script for the visualising the spin dynamics point which generated the data. This is to the script, which can visualize the synthetic CPMG data. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Fix for the file name writing of the point file. Bug #22023: relax dx.map produce .net files which makes error.
- Made system test Relax_disp.test_cpmg_synthetic_dx_map_points to start testing. Modified also sample CPMG script to allow for this. Task #7791, the dx.map should accept a list of list with values for points.
- Modified user function dx.map to accept list of lists with values. Task #7791, the dx.map should accept a list of list with values for points.
- Added is_list_val_or_list_of_list_val to lib/arg_check.py. This function is not yet done. Task #7791, the dx.map should accept a list of list with values for points.
- Added list_of_lists to user_functions/objects.py. Task #7791, the dx.map should accept a list of list with values for points.
- Added list_of_lists to uf_objects. Task #7791, the dx.map should accept a list of list with values for points.
- Made multiple writing of point files. Task #7791, the dx.map should accept a list of list with values for points.
- Added B14 to the dispersion software comparison table in the manual (docs/latex/dispersion_software.tex). Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_relax_manual.
- Added B14 to the dispersion auto-analysis. The B14 models will not create output files until this is done. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#The_GUI
- Completely removed the list_of_lists argument. Task #7791, the dx.map should accept a list of list with values for points.
- Modified the description of making x,y,z points in the χ2 space for the user function dx.map. Task #7791, the dx.map should accept a list of list with values for points.
- Made solutions for math domain error. Prevented to take log of negative values, and division by zero. This though slows the implementation down. System test Relax_disp.test_baldwin_synthetic_full went from 6.x seconds to 8-9.x seconds. Sr #3154, implementation of Baldwin (2014) B14 model - 2-site exact solution model for all time scales. This follows the tutorial for adding relaxation dispersion models at: http://wiki.nmr-relax.com/Tutorial_for_adding_relaxation_dispersion_models_to_relax#Debugging.
- Changed an 'align' environment to 'equation' as there was only one equation.
- Removed invisible equations from the B14 dispersion model section of the relax manual. The trailing "\\" were causing equation numbers to be produced on empty lines after the block of equations.
- The f00 equation in the B14 dispersion model section of the manual is a single equation. The 'subequations' and 'align' environments are therefore superfluous.
- Modified dx.map to accept more than one point. Task #7791, the dx.map should accept a list of list with values for points.
- Added system test for the production of dx map. Relax_disp.test_cpmg_synthetic_dx_map_points. Task #7791, the dx.map should accept a list of list with values for points.
- Added proper punctuation to the B14 dispersion model equations in the manual. Equations should be readable as English sentences and they follow standard punctuation rules. All of the equations in the B14 model section of the dispersion chapter have been updated to follow this.
- Fixes for quotation marks in the B14 dispersion model section of the manual. LaTeX requires `' for single quotes rather than .
- Standardised the CR72 R2eff factor in the B14 dispersion model section of the manual. This is now defined in the preamble of the LaTeX manuscript.
- Converted all complex numbers 'i' in the B14 dispersion model section of the manual to \imath.
- Removed some unnecessary {} brackets from the user manual. This is for the B14 model section of the dispersion chapter.
- The ncyc variable is now defined in the LaTeX preamble. This is for the B14 model section of the dispersion chapter.
- Fixes for some of the maths in the B14 model section of the dispersion chapter.
- Fix for the arccosh operator in the B14 section of the manual. This is for the B14 model section of the dispersion chapter.
- Switched to using the LaTeX math symbol for real numbers \Re. This is for the B14 model section of the dispersion chapter.
- The Ncyc definition in the manual now uses a capital N.
- The \arccosh LaTeX maths operator is now defined in the preamble of the manual. This is used by the B14 model section of the dispersion chapter.
- Improved brackets for the B14 model section of the dispersion chapter. The \left( and \right) command are used to produce brackets that scale to the size of the maths within these brackets. One set of unneeded brackets were also removed.
- Grammar fixes for the B14 model section of the dispersion chapter.
- Added some text explaining why the B14 equations do not look like those of the paper. This is for the B14 model section of the dispersion chapter.
- Small edits to the text of the B14 dispersion model section of the manual.
- Replaced 'get' and 'got' with alternatives, as this verb is not to be used in formal English. This is for the B14 model section of the dispersion chapter of the manual.
- Clean ups of the Carver and Richards descriptions. This is for the B14 model section of the dispersion chapter of the manual.
- More basic editing of the text of the B14 dispersion model section of the manual.
- The T_relax symbol is now defined in the preamble of the manual. This is to standardise its usage in the dispersion chapter.
- Major fix for the R2eff equations for the B14 dispersion model in the manual. Here τCPMG, the time for one CPMG block, was mixed up with Trelax, the total time of all CPMG blocks.
- Switched some 'v' symbols to '\nu' in the B14 dispersion model section of the manual.
- Standardised the spacing in the equations for the B14 dispersion model in the manual.
- Clean ups for the end of the B14 dispersion model section of the manual. Here a number of 'v' were changed to \nu and the standard \kAB, \pA, and \pB are now used.
- Some more τCPMG verses Trelax fixes for the B14 dispersion model equations in the manual.
- Added some symmetry to the T equation in the B14 dispersion model section of the manual.
- Latex2html fixes for the HTML version of the relax manual. This is for the documentation at http://www.nmr-relax.com/manual/index.html. Latex2html has problems determining if the contents of environments should added to the sub or superscript. For example $1^\textrm{st}$ is not recognised and must be changed to $1^{\textrm{st}}$ for latex2html to function correctly. Therefore these problems have been fixed throughout the manual. The number of errors printed out by latex2html is now significantly less.
- Shifted the model-free model equations for the HTML manual to the subequations environment. This is for the relax manual at http://www.nmr-relax.com/manual/index.html This is to preserve the equation numbering so that the HTML and PDF equation numbers match as closely as possible.
- Fixes for the equation number in the HTML version of the manual. This is for the relax manual at http://www.nmr-relax.com/manual/index.html.
- Made collecting of min, max and median value of χ2, when creating the χ2 map. Task #7792, make the dx.map write suggest chi surface values.
- Made the parsing of the min, max and median χ2 value to be used to define the χ2 hypersurfaces when writing the dx .net program. Task #7792, make the dx.map write suggest chi surface values.
- Updated the latex2html HTML version to 4.1. This is for the relax manual at http://www.nmr-relax.com/manual/index.html.
- Removed the "remap" keyword in the dx.map function, since this is not in use. Task #7792, make the dx.map write suggest chi surface values.
- Removed the keywords for "remap" in backend function, since this was not used. Task #7792, make the dx.map write suggest chi surface values.
- Added the keyword "chi_surface" to the front-end dx.map function. To set the χ2 surface level for the innermost, inner, middle and outer isosurface. Task #7792, make the dx.map write suggest chi surface values.
- Added the chi_surface=None to the backend function. When None, it will try to find reasonable χ2 values. These will define surface levels for the innermost, inner, middle and outer isosurface. Task #7792, make the dx.map write suggest chi surface values.
- Now saves all χ2 values, to better find reasonable chi level for the innermost, inner, middle and outer isosurface. Task #7792, make the dx.map write suggest chi surface values.
- Made the standard values of χ2 surface be 10, 20, 50 and 90 percentile of all χ2 values. Task #7792, make the dx.map write suggest chi surface values.
- Increased the precision of many of the Frame_order.test_rigid_data_to_*_model system tests. This is to fix a test which was failing due to the recent re-parameterisation of the rotor frame order model to eliminate one parameter. The precision of the numeric Sobol' sequence integration has been increased by shifting the fixed parameter values even closer to zero. As a consequence, the chi-squared value of five of these tests is now lower.
- Fix for system test Relax_dips.test_cpmg_synthetic_dx_map_points. Removing keyword "remap", since this is not in use anymore. Task #7792, make the dx.map write suggest chi surface values.
- Changed the import of percentile from lib.mathematics to lib.numpy_future. Task #7792, make the dx.map write suggest chi surface values.
- Changed the percentage which is different in percentile from numpy_future. Task #7792, make the dx.map write suggest chi surface values.
- Added lib/numpy_future.py. This module is for implementing numpy function code from higher versions of numpy. The relax dependencies listed at the download page of relax: http://www.nmr-relax.com/download.html#Source_code_release currently only requires numpy >= 1.0.4. Task #7792, make the dx.map write suggest chi surface values.
- Added "numpy_future" to the __init__.py file in lib directory. Task #7792, make the dx.map write suggest chi surface values.
- Moved numpy_future from lib to extern. Extern is special package for external software or code that is bundled with relax. Task #7792, make the dx.map write suggest chi surface values.
- Updated synthetic CPMG data script. This is to analyse complex dispersion data. Related to bug #22021 model B14 shows bad fitting to data. Bug #22024 minimisation space for CR72 is catastrophic. The χ2 surface over Δω and pA is bounded.
- Added 4 unit tests for the lib.geometry.lines.closest_point_ax() function. This relax library function was previously not being checked in the test suite.
- Modified the rotor2 CaM frame order test data optimisation script to optimise the pivot. Print statements has been added for comparing the optimised to the original pivot. The rotation axis is now also only created once, as it is now used in three places in the script, hence the two functions for converting parameters to the new parameterisation have been updated.
- Modified the rotor2 CaM frame order test data optimisation script to compare the rotor axes. The optimised rotor axis is recreated with the lib.frame_order.rotor_axis.create_rotor_axis_alpha() function, and then the original and optimised axes are compared. The state.save user function has been shifted forwards in the script to avoid a later RelaxError. The log file, average position PDB file, and state file from running the script have been added to the repository or updated.
- Removed the domain rotation code from the pymol.cone_pdb user function backend. This should only display the cone PDB object. The domain rotation is now performed by the far more powerful frame_order.pdb_model user function.
- Created the Status_object.test_install_path system verification test. This is to catch bug #22037, the failure to load graphics in the GUI due to the relax installation path not being set up correctly.
- Started to create a chapter for the N-state model or ensemble analysis in the manual. This simply consists of a few introductory sections and the phathalic acid graphic.
- Spacing improvements in the stereochem_analysis.py N-state mode sample script.
- Docstring improvements for the stereochem_analysis.py N-state model sample script. The paragraphs are now all on one line and 'Q-factor' has been changed to 'Q factor'.
- Replaced 'Q-factor' with 'Q factor' throughout the relax codebase. This change to the correct notation covers code, comments, and docstrings.
- Added a new section for the stereochemistry analysis to the N-state model chapter of the manual. This is just an initial introduction and an inclusion of the sample script.
- Editing of the auto_analyses.stereochem_analysis module docstring. The line wrapping to 100 characters has been removed.
- Exampled the stereochemistry analysis section of the N-state model chapter of the manual.
- Advances to the Grace 2D plotting abilities in the lib.software.grace relax library module. The write_xy_header() function now accepts the new 'world', 'tick_major_spacing', and 'tick_minor_count' arguments. These allow the world view to be preset, and allow the ticks on the X and Y-axes to be programatically changed. The write_xy_data() has also been modified so that the autoscaling can be turned off, as this Grace command will overwrite the world view and tick setup.
- Improvements for the 2D Grace plots created by the rdc.corr_plot user function. The autoscaling is now turned off, as the data set representing the diagonal (with points [-100, -100] and [100, 100]) causes the world view to be set to be between -100 to 100 or -200 to 200. The world view is set to be between -50 and 50 Hz, so that all RDCs should be visible. The ticks in the plot have also been set so that the minor ticks are at every Hz increment.
- The units are now included in the Grace axis labels created by the rdc.corr_plot user function.
- Added the 'title' and 'subtitle' arguments to the rdc.corr_plot user function. This allows the defaults to be overridden with user supplied titles and subtitles.
- The rdc.corr_plot and pcs.corr_plot user function now use the Grace icon in the GUI.
- Created the new pymol.frame_order user function. This user function pairs with the frame_order.pdb_model user function, taking the three PDB files created and displaying them nicely. Neither user function is complete, however the rotor representation of certain frame order models is handled correctly.
- Created a script for finding all dead http://www.nmr-relax.com links in files of a directory tree.
- Created the Structure.test_bug_22041_atom_numbering system test to catch bug #22041. The problem is that the structure.write_pdb user function does not create the correct atom serial numbers.
- Modified the frame_order.pdb_model user function so that the three PDB files are optional. This allows only certain components of the frame order theory to be represented in PDB format.
- Improvements for the rotor PDB representation shown by the pymol.frame_order user function. The stick radius width change is now only for the rotor PDB object, and not everything in PyMOL.
- Modified the 2nd rotor model of CaM frame order optimisation script. The frame_order.pdb_model user function is now used to create a PDB representation of the rotor motions for the real, expected parameters and for the optimisation results when the pivot point is fixed. In addition, the pymol.cone_pdb user function has been replaced by the pymol.frame_order user function. All new files have been added to the repository.
- Added a relax script for creating a PDB representation of the original pivot point. This is for the 2nd rotor model of CaM frame order in the test suite. The resultant PDB file has been added to the repository.
- Modified the pivot point PDB representation script to include the shifted pivot. This is for the 2nd rotor model of CaM frame order in the test suite.
- Added the 'centre_type' argument to the structure.superimpose user function. This allows the default 'centroid' superimposition to be replaced by a centre of mass (CoM) superimposition instead. As the CoM and centroid position do not match, the translation vector and Euler rotation angles will be different.
- Exposed the backend verbosity flag of the structure.read_* user functions. This allows the user to silence these user functions, which can be very useful when loading many 3D structures in the scripting UI mode. This change is for the structure.read_gaussian, structure.read_pdb, and structure.read_xyz user functions.
- Expanded the structure.delete user function to add the 'verbosity' and 'spin_info' arguments. The verbosity argument, when set to zero, allows all output to be suppressed. The spin_info flag allows the deletion of spin and interatomic data to now be turned off, so that only 3D data is deleted.
- The new structure.delete 'verbosity' argument is now propagated into the structural object. This allows the printouts to now be completely suppressed.
- The structure.read_* user function 'verbosity' argument is now passed into the structural object. This allows another printout to be silenced.
- The structure.read_* user function 'verbosity' argument is now passed into lib.io.open_read_file(). This allows all printouts from these three user functions to be suppressed.
- Converted the Mf.test_opendx_s2_te_rex system test into a GUI test. This is to demonstrate bug #22035, the dx.map user function being broken in the GUI.
- Python 3 fixes for the extern.numpy_future module. These changes are necessary to allow relax to even run.
- Python 3 fixes for all of the relax code base. The lib.compat and multi.processor module changes were fatal, not useful for Python 3, and hence reverted.
- Python >= 3.2 fix for the Relax_disp.test_sod1wt_t25_to_sherekhan_input system test. The B0 field value of the ShereKhan input files created by the relax_disp.sherekhan_input user function was formatted as "%s". However in Python >= 3.2, floats are now converted to have 14 decimal places whereas previous Python versions only had 10 places. The user function backend now forces only 10 decimal places to be written to the input files.
relax 3.1 series
relax 3.1.7
- Added text file for the articles reference values from the global fit in Relax_disp.test_r1rho_kjaergaard. Regarding bug #21344, handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths. This is from optimisation of the Kjaergaard et al., 2013 Off-resonance R1ρ relaxation dispersion experiments using the 'DPL' model. This uses the data from Kjaergaard's paper at DOI: http://dx.doi.org/10.1021/bi4001062.
- Replaced "_" with "-" in text file with global fit residues. Regarding bug #21344, handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Sorted the reference values in residue order. Regarding bug #21344, handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Added reference data and guess data for a global fit R1ρ analysis. Regarding bug #21344, handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths. This system test is setup comparison with paper values, and will be turned off later to prevent long running time.
- Redid dict() keys for unit test of find_intensity_keys(), to pass on Python 3.2 and 3.3. Work in progress for bug #21344, handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths. This is a response to message: http://thread.gmane.org/gmane.science.nmr.relax.devel/5132.
- Added ":" to dictionary keys to match return from spin_loop in system test Relax_disp.test_r1rho_kjaergaard. Regarding bug #21344, handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Removed model No Rex to be tested in system test Relax_disp.test_r1rho_kjaergaard. Regarding bug #21344, handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Aliased spins in system test Relax_disp.test_r1rho_kjaergaard. Regarding bug #21344, handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Set opt_func_tol = 1e-15 and opt_max_iterations = 100000 to run system test Relax_disp.test_r1rho_kjaergaard faster. Regarding bug #21344, handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Re-ordered code lines in system test Relax_disp.test_r1rho_kjaergaard. Regarding bug #21344, handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Assigned guess values for system test Relax_disp.test_r1rho_kjaergaard. Regarding bug #21344, handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Added a section at the start of the dispersion GUI analysis tutorial about 'computation time'. This is for the dispersion chapter of the manual.
- Removed alias of spins in system test Relax_disp.test_r1rho_kjaergaard. Work in progress for bug #21344, handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Added fitted R1 values from paper to system test Relax_disp.test_r1rho_kjaergaard. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. This will be used to test the output of calculating Ωeff, as stated in http://article.gmane.org/gmane.science.nmr.relax.devel/5148.
- Added reading of R1 values in system test Relax_disp.test_r1rho_kjaergaard. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added full manual steps of analysis for system test Relax_disp.test_r1rho_kjaergaard. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Modified the directory separator from "/" to os.sep in system test Relax_disp.test_r1rho_kjaergaard. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Commented out the commands for writing of text files and state files to speed up system test Relax_disp.test_r1rho_kjaergaard. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added the testing of writing out θ values in system test Relax_disp.test_r1rho_kjaergaard. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added the parameter "theta" to specific_analyses/relax_disp/api.py. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Modified parameter py_type to dict() for the θ value. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added parameter "theta" do description tables. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Made an assertion that spin contains attribute "theta" in system test Relax_disp.test_r1rho_kjaergaard. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added unit test for return_offset_data. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. This is development according to thread http://thread.gmane.org/gmane.science.nmr.relax.devel/5157.
- Commented out the expectation of the attribute "theta" to exist in system test Relax_disp.test_r1rho_kjaergaard. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Imported return_param_key_from_data to be used in unit test return_offset_data. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- The relax information printout, from "relax -i" for example, now includes detailed CPU information. This uses operating system specific commands to obtain this information which is not available from the platform Python module.
- Removed the dependence on subprocess.check_output() as this is only for Python 2.7 and higher. This is for the relax information printout about the CPU info recently introduced.
- The RAM in the relax information printout is now displayed for Mac OS X. The 'sysctl' command is now being used to retrieve the RAM size and total memory, and the swap is calculated as the difference.
- Added the OMP relaxation rates and compressed PDB file to the repository. This is to allow users to have a full data set to perform a test model-free analysis with.
- Added a sample_script to generate θ values for R1ρ data. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. The script is explained at the wiki: http://wiki.nmr-relax.com/Sample_scripts.relax_disp.return_offset_data.
- Created a new citation for relax[d'Auvergne and Gooley, 2008c] which concatenates both the d'Auvergne and Gooley 2008 papers[d'Auvergne and Gooley, 2008a][d'Auvergne and Gooley, 2008b]. This is to show to those who are unaware of back-to-back paper concatenation rules how to cite both papers using one reference, saving a lot of space.
- Added lib.rotating_frame module containing functions related to rotating frame NMR calculations. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added rotating_frame to lib.__init__.py. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added unit test file _lib.test_rotating_frame.py to __init__.py. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added unit test file _lib.test_rotating_frame(). Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. These unit test will be used to calculate and return dictionaries of tilt_angles, Delta_omega and omega_eff. Some of the R1ρ data mentioned in: http://www.nmr-relax.com/manual/Dispersion_model_summary.html.
- Added link to manual for calculating NMR parameters in the doctring for lib.rotating_frame.py. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Renamed function "calc_tilt_angle" to "calc_rotating_frame_params" in lib.rotating_frame. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. This is to reflect, that the function should return and store spin values of both tilt_angles, Delta_omega and omega_eff.
- Replaced with calc_rotating_frame_params in unit test, to reflect function renaming. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Improved docstring in lib.rotating_frame. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Rearranged the citations in the citations chapter. The references for relax are now far more prominent.
- Implemented the return of Delta_omega = "average resonance offset in the rotating frame" in specific_analysis.relax_disp.return_offset_data. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Fixed unpacking of return from function calls of return_offset_data. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Made specific_analysis.relax_disp.return_offset_data return "w_eff" - the effective field in rotating frame in rad/s. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Fixed unpacking of return from function calls of return_offset_data, since ωeff is now also returned. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Moved calc_rotating_frame_params() to specific_analysis.relax_disp.disp_data. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. This is in a response to message: http://www.mail-archive.com/relax-devel@gna.org/msg05080.html.
- Started unit test for _specific_analysis._relax_disp.test_disp_data.test_calc_rotating_frame_params. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. This is in response to message: http://www.mail-archive.com/relax-devel@gna.org/msg05080.html.
- Removed lib.test_rotating_frame.py and the associated unit test. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. This is in response to http://www.mail-archive.com/relax-devel@gna.org/msg05080.html.
- Made calc_rotating_frame_params take spin "The spin system specific data container" as input. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Modified calc_rotating_frame_params() to operate on the level of spin container and ID. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Modified unit test test_calc_rotating_frame_params to use spin container and ID in test. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Epydoc docstring fix for the Structure.test_bug_21522_master_record_atom_count system test. This is for the API documentation at http://www.nmr-relax.com/api/3.1/index.html.
- Epydoc docstring fix for the SetValue() method of the File input GUI element. This is for the API documentation at http://www.nmr-relax.com/api/3.1/index.html.
- Removed the test_suite/shared_data directory from the API documentation scanning. This is to avoid trying to import the frame order relax scripts which cannot be imported into Python.
- Added epydoc information about dimensions for w_e in function return_offset_data. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added verbosity flag to calc_rotating_frame_params() to allow switching of print information. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added unit test for use of value.write to write θ values calculated from calc_rotating_frame_params(). Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Extended unit test for use of value.write to write intensities file. This is to test that changing of the API function will retain its function. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Replaced API function in specific_analysis.relax_disp.api to calculate and return values for parameter θ when this is requested. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Implemented according to http://www.mail-archive.com/relax-devel@gna.org/msg05082.html.
- Extended API function in specific_analysis.relax_disp.api to calculate and return values for parameter θ when this is requested. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. Implemented according to http://www.mail-archive.com/relax-devel@gna.org/msg05082.html.
- Variable renaming and closing of files in unit test test_value_write_calc_rotating_frame_params(). Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Extended unit test test_value_write_calc_rotating_frame_params() to also test writing of ωeff values. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Fixed typo and removed grace string for parameter description of θ. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added parameter 'w_eff', the effective field in rotating frame calculation to dispersion API. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added handling of calculating ωeff in dispersion API. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added unit to parameter description of θ and ωeff. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Fix for field count and added check for R1ρ type in calc_rotating_frame_params(). Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added grace string to parameter description of θ and ωeff. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Fixed code duplication in relax_disp API, for calculation of θ and ωeff. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Removed unused lines of code in unit test test_return_offset_data(). Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Moved unit test of value writing of calc_rotating_frame_params() into separate system tests. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added system test Relax_disp.test_value_write_calc_rotating_frame_params_auto_analysis(). Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. This is to test the auto_analysis value.write function to write θ and ωeff values for an R1ρ setup.
- Added writing of parameters θ and ωeff for an auto-analysis if model in MODEL_LIST_R1RHO_FULL. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added return of None values for function calc_rotating_frame_params() if spin is not selected. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Extended system test Relax_disp.test_value_write_calc_rotating_frame_params_auto_analysis() to test the writing of θ values. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Hardcoded the writing of R2eff as function of the tilt angle θ, when using the user function relax_disp.write_disp_curves . Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. θ values per spin will be written if the spin.model is in the list MODEL_LIST_R1RHO_FULL.
- Fix for return of None tuble in calc_rotating_frame_params(). Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Fix for correct use of assertNotEqual or assertEqual in Relax_disp system tests. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Hardcoded contents of writing of parameters θ and ωeff in system test Relax_disp.test_value_write_calc_rotating_frame_params_auto_analysis(). Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. This is to better support testing of key ordering and different architectures, etc.
- Fixed code duplication in specific_analysis.relax_disp.disp_data.write_disp_curves(). Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Modified system test of hardcoded values of θ and ωeff to match precision to 14 digits. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Fix for handling the writing of theta.out and w_eff.out in relax_disp auto_analysis, when model is not of R1ρ type. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. This was discovered using the system tests.
- Fix for calculating the θ angle describing the tilted rotating frame relative to the laboratory, when omega1 / Delta_omega is negative. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. This follows discussion in: http://thread.gmane.org/gmane.science.nmr.relax.devel/5205.
- Modified unit and system test to reflect new calculation of rotating frame tilt angle θ. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff. This was discussed in thread: http://thread.gmane.org/gmane.science.nmr.relax.devel/5205.
- Added interpolation calculation of θ and ωeff, when dispersion points are interpolated. Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
- Added printout of Ω, the average resonance offset, in calc_rotating_frame_params(). Regarding sr #3124, Grace graphs production for R1ρ analysis with R2eff as function of Ωeff.
relax 3.1.6
- Converted the chain ID list in the internal structural object to the CHAIN_ID_LIST module variable.
- The internal structure object method _pdb_chain_id_to_mol_index() now uses the CHAIN_ID_LIST string. This allows for the full PDB chain ID range to be supported.
- Small improvement for the devel_scripts/python_seek.py script. The list of detected Python binaries files are now sorted prior to determining the installed modules.
- Updated the N_state_model.5_state_xz system test to allow it to complete on i586 Linux systems. The optimisation would continue for a huge amount of time on a test system (Mageia 4 i586 VM) and would make it appear as though the test suite has hung. By limiting the maximum number of iterations in the optimisation to 1000, the test will complete successfully and the parameters optimised to the same precision.
- Loosened the checks for the Frame_order.test_korzhnev_2005_15n_zq_data system test. This is to allow the test to pass on a 32-bit test system (Mageia 4 i586 VM).
- Decreased the accuracy of the Relax_disp.test_korzhnev_2005_15n_dq_data system test. This is to allow the test to pass on a 32-bit test system (Mageia 4 i586 VM).
- Decreased the precision of the Relax_disp.test_hansen_cpmg_data_auto_analysis system test. This is to allow the test to pass on a 32-bit test system using Python 2.5 and Python 3.1 (Mageia 4i586 VM).
- Decreased the precision of the Relax_disp.test_hansen_cpmg_data_auto_analysis_r2eff system test. This is to allow the test to pass on a 32-bit test system using Python 2.5 and Python 3.1 (Mageia 4i586 VM).
- Decreased the precision of the Relax_disp.test_hansen_cpmg_data_to_cr72 system test. This is to allow the test to pass on a 32-bit test system using Python 2.5 and Python 3.1 (Mageia 4i586 VM).
- Fix for the test_suite/system_tests/scripts/noe/bug_21562_noe_replicate_fail.py system test script. There was some invisible binary junk at the start of the file which as causing the Noe.test_bug_21562_noe_replicate_fail system test to fail, as the script could not load. This was only affecting one 32-bit test system using Python 3.1 and Python 3.2 (Mageia 4 i586 VM).
- Fixes for the unit tests of the package __all__ lists for Python 3. When Python 3 generates byte-compiled *.pyc files, these are stored in __pycache__ directories. These directories are now skipped for the package content unit tests, allowing the test to pass.
- Loosened the checks of some of the Relax_fit system tests. These are the Relax_fit.test_curve_fitting_height and Relax_fit.test_curve_fitting_volume system tests. The minor change is required to allow the tests to pass on a 32-bit system with Python 3.3.3.
- The python_seek.py development script now allows the modules to be specified on the command line. This speeds up the script and allows individual modules to be checked and the version displayed.
- Added a copyright notice to the python_seek.py script. The descriptive text has also been converted into a docstring. The copyright is simply to show who wrote the script and how old it is.
- The python_seek.py script can now check for the ancient Numeric module.
- The python_seek.py script can now check for the ancient Scientific module.
- The python_seek.py now lists the Python version again (broken in the last few commits).
- The python_seek.py script now accepts the 'all' argument to display all modules supported by the script.
- Output formatting improvements for the python_seek.py development script.
- Changed the module ordering in the python_seek.py development script.
- Epydoc docstring fix for the pipe_control.structure.main.load_spins() function.
- Created the Mf.test_bug_21615_incomplete_setup_failure GUI tests. This is designed to catch bug #21615 as reported by Ivan Leung (ivanhoe dott leung att chem dott ox dot ac dot uk). Included are the data files Ivan attached to the bug report truncated to two residues. The GUI test follows exactly the steps outlined by Ivan.
- Deleted the ancient, unused 'quit' argument of the relax interpreter object. This code was identified in a post by Troels Linnet at http://thread.gmane.org/gmane.science.nmr.relax.devel/5000/focus=5003. This argument never worked correctly and has not been used for many, many years. Many code paths in relax needed to be updated to remove the argument.
- Shifted the pedantic flag to escalate flag. The option -p would instead be used for the option --prompt. Fix for sr #3117 - Functionality to inspect interactively after running script - The equivalence to python -i.
- Added the -p --prompt option for running a relax script and inspect interactively. Fix for sr #3117 - Functionality to inspect interactively after running script - The equivalence to python -i.
- Modified the help text to explain that -p will launch relax in prompt mode after running any optionally supplied scripts. Fix for sr #3117 - Functionality to inspect interactively after running script - The equivalence to python -i. This is to allow the -p --prompt option to be given without a script. relax should support this so that a user doesn't get too confused when trying to start in prompt mode with the --prompt flag and support the --prompt argument without a script being supplied.
- Finished implementing the functionality of interacting with variables after executing a script. Fix for sr #3117 - Functionality to inspect interactively after running script - The equivalence to python -i. For getting access to variables after executing a script, the variable should be saved under: cdp.X, where X define a container. The name space issue is discussed in: http://thread.gmane.org/gmane.science.nmr.relax.devel/5012.
- Organisation of the relax command line options into distinct groups. This follows from the message at http://thread.gmane.org/gmane.science.nmr.relax.devel/5024. The optparse.OptionGroup object is now used to cluster the arguments. This cleans up the output of 'relax -h' and explains the options to the user in a clearer way.
- Fix for the user function intro flag. Fix for sr #3117 - Functionality to inspect interactively after running script - The equivalence to python -i. It should be turned on for the script so you see the "relax>" messages, and then turned off again for the prompt so that the user function text and "relax>" is not printed out twice.
- Updated the copyright statement shown in the GUI for 2014.
- Save state added for bug #21665. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Added system test to catch bug: relax -s Relax_disp.test_bug_21665_cpmg_two_fields_two_delaytimes_fail. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Added a system test for using both calc() and a system test for relax_disp auto analysis. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Added some initial screenshots of the dispersion GUI analysis. These will be used to create a tutorial for using the relaxation dispersion analysis in the GUI to be added to the dispersion chapter of the relax manual.
- Started to create the tutorial in the manual for using the dispersion GUI. This is at the end of the relaxation dispersion chapter of the manual and covers the basic setup of spin systems. It includes the recently added screenshots.
- Improvement to the formatting of the GUI menu item text in the manual. The text can now have a line break between the items, just after the arrows. This significantly improves the paragraph layout in the manual.
- Created two new LaTeX commands for improving the layout of the relax manual. These are \ossep and \osus which will be used to format the file and directory separator character and the underscore character respectively. They will be used in the \file{} and \directory{}commands to add the '/\linebreak[0]' and '\_\linebreak[0]' text to allow for better line breaking.
- Converted all LaTeX files of the manual to use the new \ossep and \osus commands. This will result in better formatting of the manual by making the linebreaking after '/' and '_'characters consistent and universal.
- Created two new LaTeX commands for improving the layout of user functions in the relax manual. These are \ufsep and \ufus which will be used to format the user function separator character and the underscore character respectively. They are used in the \uf{} commands to add the '.\linebreak[0]' and '\_\linebreak[0]' text to allow for improved and consistent line breaking.
- Added the unit test infrastructure for testing the specific_analyses.relax_disp package. This currently includes the package __all__ list unit test.
- Updated the specific_analyses.relax_disp package __all__ list. This was identified in the previously committed unit test.
- Added the infrastructure for the unit tests of the specific_analyses.relax_disp.disp_data module. This is in response to the post http://thread.gmane.org/gmane.science.nmr.relax.scm/19963/focus=5046 by Troels, and is described in my response at http://thread.gmane.org/gmane.science.nmr.relax.scm/19963/focus=5048.
- Created two new LaTeX commands for improving the layout of Python code in the relax manual. These are \pysep and \pyus which will be used to format the Python module separator character and the Python underscore character respectively. They are used in the \module{}, \pycode{}, etc. commands to add the '.\linebreak[0]' and '\_\linebreak[0]' text to allow for improved and consistent line breaking.
- Complete reformatting of the base LaTeX files. The paragraph structure has been changed so that each sentence now starts on a new line. This is for better tracking of changes (via 'svn diff' for example), for better searchability of certain text elements using command line tools such as 'grep', and for easier easier use of the 'sed' tool. The change tracking is most important as it allows for finer granularity - a small change will now only be shown as a change in one sentence rather than the whole paragraph, allowing the change to be identified more easily. It also allows for easier commit maintenance.
- Reformatting of all of the LaTeX code for the figures in the relax manual. The aim is to have as many parts as possible on separate lines to allow for better control of changes in the subversion repository and for improved usage of command line tools.
- Reformatting of all of the LaTeX code for the itemize and description lists in the relax manual. This is to regularise the LaTeX code throughout the *.tex files of the manual. All items are now indented for easier viewing. And leading empty lines before the lists have all been removed.
- The docstring fetching script for the manual now creates lists in the new, cleaner format.
- Implemented unit test for catching the correct return of loop_exp_frq_offset_point_time. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Grammar corrections - changed the 'eg.' abbreviation to 'e.g.' in a couple of places.
- Modified the unit test name for testing the correct return of the relaxation time periods. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Added more to the dispersion GUI analysis tutorial. This includes a screenshot showing the use of the 'Spin isotope' button in the GUI. Descriptions for all five 'metadata' buttons have been added as well.
- Expanded the relaxation dispersion GUI tutorial in the manual. This now includes the first steps for loading the peak intensity data.
- Added the The relaxation time period to be used when returning cpmg frqs. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Added test for skipping non-matching time points. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Added the time point to be sent into the return function of cpmg frequencies. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Improved unit test for cathing both time and dispersion point when looping over experiment and time points. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Modified the spectrum.read_intensities user function frontend to load multiple files. This follows from the thread http://thread.gmane.org/gmane.science.nmr.relax.devel/5057/focus=5062.
- Implemented the GUI element for loading multiple files. This follows from the thread http://thread.gmane.org/gmane.science.nmr.relax.devel/5057/focus=5062. This is via the new user function argument type "file sel multi", now used by the spectrum.read_intensities user function. The file selection element consists of two parts. The GUI element embedded in the user function wizard page is similar to the "file sel" element, except that the preview button is not present. The file selection button behaviour is also different in that it launches the new multiple file selection window. The multiple file selection window is based on the 'sequence' data window, as used in the spectrum ID argument for the spectrum.read_intensities user function. However the ListCtrl element has been replaced by a custom scrolled panel. The 'Add' button adds a new file selection GUI element consisting of a TextCtrl for displaying and manual editing of the file name, the file selection button for launching the relax file selection dialog, and the preview button lost in the parent GUI element. The scrolled panel allows more elements in the panel than can fit in the window. The 'Delete all' and 'OK' buttons from the 'sequence' data window are also present and function as expected.
- Modification of the new multiple file selection GUI element. The multiple file selection window now shows the index (plus one) of each file selection element at the front of that element. This way the user can easily see how many file elements there are and can match file names to numbers. This will help in making sure that the file names and spectrum ID elements correspond to each other.
- Added a 'Delete' button to the new multiple file selection GUI window. This simply deletes the last item in the list. This will be useful if the user clicks on the 'Add' button too many times - instead of clicking 'Delete all' and having to re-select all files, now the last element can be removed.
- Improved the behaviour of the multiple file selection GUI window. The RelaxFileDialog GUI element is now initialised when the file selection button is clicked rather than in the __init__() method. The result of this change is that the current working directory is dynamically changed in the RelaxFileDialog, hence if the directory is changed in one file selection element, it will look like it is changed in all.
- Renamed the test_loop_exp_time() dispersion unit test to test_loop_exp_frq_offset_point_time(). This is for the specific_analyses.relax_disp.disp_data.Test_disp_data.test_loop_exp_frq_offset_point_time() unit test. The name better reflects the function being tested.
- Created the test_loop_exp_frq() dispersion unit test. This checks the operation of the loop_exp_frq() function from the module specific_analyses.relax_disp.disp_data. It uses the data attached to the bug report at https://gna.org/bugs/?21665.
- Fixes for the unit tests of the spectrum.read_intensities user function. A number of checks were not correctly set up, and the recent changes caused others to now fail.
- Modified the GUI window for inputting sequence data to include item numbers. An non-editable initial column with the number of each item has been added. This is to help the user when, for example, the items of one sequence element should match another (for example in the spectrum.read_intensities user function where multiple file names should match multiple spectrum IDs).
- Added a 'Delete' button to the sequence input GUI window. This is to match the multiple file selection GUI window. The button allows the user to delete the last item from the list. So if 'Add' has been clicked too many times, the user does not have to start again from scratch by clicking on 'Delete all'.
- More modifications to the sequence input GUI window to match the multiple file selection element. The window now starts with a single element rather than nothing.
- Continued expanding the tutorial for performing a relaxation dispersion analysis in the GUI. This is for the dispersion chapter of the manual.
- Created the Peak_lists.test_read_peak_list_sparky_double system test. This is used to test the loading of multiple files simultaneously by the spectrum.read_intensities user function.
- Expanded the Peak_lists.test_read_peak_list_sparky_double system test to check all intensities. This now checks all of the peak heights read by the spectrum.read_intensities user function.
- Expanded the capabilities of the spectrum.read_intensities user function. Now multiple files can be loaded simultaneously.
- Fix for the multiple file selection GUI element. The GUI element now returns single values rather than lists from the GetValue() function when only a single file is selected. This allows the spectrum.read_intensities user function to operate normally again in the GUI.
- Minor fix for the Relax_disp.test_bug_21076_multi_col_peak_list system test. The spectrum ID argument ['auto'] has been changed to the single value of 'auto'. This argument should not be a list.
- Expansion of the tutorial for running the relaxation dispersion analysis in the GUI. The tutorial is now close to complete. The peak intensity loading wizard section is complete as well the model selection window and optimisation settings sections and the relax execution.
- More additions for the tutorial on using the dispersion analysis in the GUI. This is for the relaxation dispersion chapter of the manual. The tutorial is almost complete with descriptions and screenshots for completing the non-clustered analysis and conducting the clustered analysis all the way to execution.
- Created the State.test_bug_21716_no_cdp_state_save system test. This is for catching bug #21716, the failure to save the relax state just after deleting the current data pipe, even if other data pipes exist.
- Created the General.test_bug_21720_pipe_switching_with_tab_closure GUI test. This is to catch bug #21720, the failure to set the current data pipe in the GUI when the current and non-last analysis tab is closed. The test replicates the steps as outlined in the bug report.
- Added unit test for looping over: exp frq offset point. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times. This follows recommendation in thread: http://thread.gmane.org/gmane.science.nmr.relax.devel/5070.
- Added unit test for looping over: exp frq offset point. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times. This follows recommendation in thread: http://thread.gmane.org/gmane.science.nmr.relax.devel/5070.
- Changes for the relaxation dispersion auto-analysis. The final data pipe name now includes the data pipe bundle name. This is so the pipe name is unique, allowing multiple analyses to be executed in one relax state.
- Fixes for all of the Relax_disp system tests for the changes to the dispersion auto-analysis. The automatically created pipe names now include the pipe bundle name to make them unique, so the system tests have been updated to match this behaviour.
- Increased the grid search size in the r1rho_on_res_m61.py dispersion system test script. This is to allow the Relax_disp.test_m61_exp_data_to_m61 system test to pass more often. The increase does not cause a large increase in computation time as less time is spent in the optimisation and Monte Carlo simulation steps.
- Renamed unit test, to follow previous namings of unit tests. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Fix for the relaxation dispersion auto-analysis to improve its behaviour in the test suite. The problem is that the auto-analysis acquires the execution lock (status.exec_lock) but if the analysis cannot complete due to a bug, the lock is never released. This causes nasty problems for many subsequent tests, resulting in a cascade of test failures. This is especially problematic in the GUI tests where the execution lock controls many aspects of the interface. The solution was simply to run the auto-analysis run() method within a try-finally statement. The release of the lock occurs in the 'finally' clause, guaranteeing its release.
- Improvement for GUI test base tearDown() clean up method. A wx.Yield() call has been added to allow all GUI operations after a relax reset to complete prior to the next test starting. This should avoid certain racing conditions which can cause a cascade of tests to fail.
- Added unit test for looping over: exp, frq, offset, point, time. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times. This unit test will fail, since the last loop over the time points has a weak assumption just to loop over all time points, instead of checking for existence of such time point. This unit test follows recommendation in thread: http://thread.gmane.org/gmane.science.nmr.relax.devel/5070.
- Expanded the loop_time function to optional take the spectrometer frequency as input for restricting looping. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Replaced print commands to be compatible with Python 3.x. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- More fixes for the relaxation dispersion auto-analysis for the pipe names now including the bundle name.
- Added some missing RelaxError imports to the dispersion auto-analysis.
- Created the Relax_disp.test_bug_21715_clustered_indexerror system test. This is to catch bug #21715, the failure of the relaxation dispersion auto-analysis when running a clustered analysis due to an IndexError during minimisation.
- Modified unit test to pass. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times. Implemented as suggested in: https://mail.gna.org/public/relax-devel/2014-02/msg00142.html.
- Expanded the loop_time function to optional take the offset and dispersion point as input for restricting looping. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times. This is implemented as suggested in: https://mail.gna.org/public/relax-devel/2014-02/msg00143.html.
- Added system test for loop_time. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times. This system can be extended later for purposes to test the restriction of the looping.
- Replacing looping over time points from cdp.relax_time_list to loop_time(frq=frq). Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times. loop_time has been modified to accept spectrometer frequency as input to restrict the looping.
- Complete support for deselected spins has been added to the relaxation dispersion analysis. This fixes bug #21715, the failure of the relaxation dispersion auto-analysis when running a clustered analysis due to an IndexError during minimisation.
- Added exp_type, frq, offset, point to the loop_time() function. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times. Implemented as suggested in: http://www.mail-archive.com/relax-devel@gna.org/msg04993.html. In all these cases, that information is available, so it should be used. If one are analysing a combination of data types simultaneously (SQ CPMG, DQ CPMG, R1ρ), one will not have the same relaxation time for each. For different spin-lock or 180 degree pulse offsets and even different dispersion points, the time may also be different.
- Made count_relax_times() take optional arguments as: exp_type, frq, offset, point. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times. This is prepare for restricting the looping over time points in the function: loop_time(). This is implemented as suggested in: http://www.mail-archive.com/relax-devel@gna.org/msg04993.html.
- Modified to pass exp_typ, frq, offset or point to loop_time() where such information is available. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Added unit test for count_relax_times. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times. This follows the suggestion in: http://www.mail-archive.com/relax-devel@gna.org/msg04993.html.
- Added test for return of get_curve_type(), to match 'fixed time'. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Added check for return of has_exponential_exp_type to be False. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Added test for the return of get_times(). Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Re-ordered unit tests for test of get_curve_type() and has_exponential_exp_type(). Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Added the extraction of exp_type and frq from cdp, to be sent into count_relax_times. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Modified check_exp_type_fixed_time to loop over ID's and use count_relax_times for each ID. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- The fetch_docstrings.py script now creates a new LaTeX listing language for relax log messages. This is in the script_definitions() method which creates the script_definition.tex file. The idea is to avoid colouring relax/Python keywords such as 'as', 'from', etc. in the log messages.
- Moved the unit test get_times() to its own test. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Moved the unit test of has_exponential_exp_type() to its own test. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Moved the unit test get_curve_type() to its own test. Regarding bug #21665 - Running a CPMG analysis with two fields at two delay times.
- Added save state for bug 21344. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Completed the tutorial for using the dispersion analysis in the GUI. This is for the relaxation dispersion chapter of the manual.
- Some edits for the tutorial on using the dispersion GUI analysis. The results of the relax_disp.insignificance user function are now shown to demonstrate what this does.
- Fixes for some incorrectly reported results in the dispersion GUI tutorial in the manual. The non-clustered results had been incorrectly copied from the log messages.
- More incorrect value fixes for the dispersion GUI tutorial in the manual. The pA and kex values were also somehow incorrect.
- Added system test for bug #21344. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths. This test will fail with: No intensity data could be found corresponding to the spectrometer frequency of 799.7773991 MHz, dispersion point of 431.0 and relaxation time of 0.14 s. Data for a dispersion point of 431.0 and time 0.14 does not exist, and so some of the looping in collecting data for calculation must be wrong. This behaviour and probably its solution is related to bug 21665, "Running a CPMG analysis with two fields at two delay times" (https://gna.org/bugs/?21665).
- Renamed previous disp_data unit tests, to reflect they were from a CPMG setup. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Added unit test for count_relax_times() for and R1ρ setup. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Fixes for the Grace kex plot for the tutorial for dispersion GUI analysis. The values for the Grace plot were not correct.
- Added unit test for loop_time() for R1ρ setup. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Renamed system test. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths. The previous test name was rubbish.
- Editing of the dispersion GUI analysis tutorial in the manual. The whole section has been proofed and improved.
- A concluding statement has been added to the dispersion GUI analysis tutorial in the manual.
- Added spacing in front of all lstlisting environments in the relaxation dispersion chapter of the manual.
- Spelling fix for the spectrometer frequency checks of the spectrometer.frequency user function.
- Spell checking of the entire relaxation dispersion chapter of the manual.
- Correction for some text in the dispersion chapter of the manual. The text 'are differentially defined' has been changed to 'are dually defined', as the word differentially was incorrect.
- Fixes for the spacing after e.g. and i.e. in the relax manual. The character '\' needs to be used after the final dot to indicate that this is not a sentence stop, hence the double spacing normally used between sentences should not be used.
- Extended system test to count number of settings iterations and match with len(cdp.exp_type.keys()). Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths. There is something wrong, since cdp.exp_type.keys()) is not matching.
- Fix for using a wrong index slicing. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Fixes for the wrong use of reading settings file and extracting parameters. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Expanded unit test for test_loop_time() in R1ρ. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Fix for the loop_time function to include point filtering for R1ρ experiments. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Fix for wrong values of "1341.11" in unit test. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths. Replaced 1341.10, and 1341.10 with 1341.11.
- Added truncated SeriesTab intensity file for only 5 spins. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Modified system test for setting up R1ρ analysis to use truncated spin list with 5 spins. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Added 5 spins truncated state file for bug #21344. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Modified unit and system test to use 5 spins truncated state file. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Added unit test for find_intensity_keys() in R1ρ analysis. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Manually reverted the temporary change of r22349 and 22348. The command used was:svn merge -r22349:r22347Reference: http://www.mail-archive.com/relax-devel@gna.org/msg05012.html.
- Modified unit test for find_intensity_keys() to simulate method in sim_pack_data(). Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Re-created the testing dictionary to easier to convert to collections.OrderedDict() if this can be supported in all relax Python versions. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Replaced dictionary keys in unit test, to easier access the original data. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Added experiment ID to dictionary, where dict() keys are offset_point_time. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Fixed to send in offset to find_intensity_keys() which allow system test to pass. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths. This is the first fix to allow system test to pass: relax -s Relax_disp.test_bug_21344_sparse_time_spinlock_acquired_r1rho_fail_relax_disp A better solution is described in: http://thread.gmane.org/gmane.science.nmr.relax.devel/5107 which will be implemented.
- Added text about '~' on MS Windows to the dispersion GUI tutorial in the manual. The home directory ~ on MS Windows will not work, so this is now explained.
- Parsed offset to find_intensity_keys() where such information is available. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Added unit test for return_intensity() for a R1ρ setup. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Fix for wrong use of variable name key and list return from find_intensity_key(). Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Added offset to be sent to return_intensity() function. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Extended return_intensity() unit test to also test for flag ref=True, which return reference intensity instead. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Added offset to be sent to loop_spectrum_ids() function. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Fix for wrong variable spectrometer_frq used instead of frq. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Removed functional return of reference intensity in R1ρ, since this does not exists. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths.
- Removed function return_intensity(), as this is no longer in use. Regarding bug #21344 - Handling of in sparse acquired R1ρ dataset with missing combinations of time and spin-lock field strengths. Reference: http://www.mail-archive.com/relax-devel@gna.org/msg05020.html.
relax 3.1.5
- Updated the interatom.unit_vectors user function description to add the text '3D structure'. This is in response to the http://thread.gmane.org/gmane.science.nmr.relax.user/1547 relax-users mailing list message and the change is to clarify the usage of the user function.
- Created the Noe.test_bug_21591_noe_calculation_fail system test. This is to catch bug #21591 submitted by Martin Ballaschk. This is the complete failure of the NOE analysis. The peak lists attached to the bug report have been included in the test suite to create the system test.
- Improvements for the steady-state NOE analysis overfit_deselect() method. The spin deselection which occurs at the start of the calc user function call, used to calculate the NOE, is now clearer. Each deselection condition is now explained in detail and the text is now far more informative. In addition, the special condition of all spins being deselected is now caught. If this happens, a RelaxError is raised to prevent the user from going forwards. This should remove confusion as to why the output file is empty.