Changes

Jump to navigation Jump to search

NS R1rho 2-site

687 bytes removed, 10:20, 5 March 2014
For this model, the equations from Korzhnev05 have been used.
The $\mathrm{R}_{1\rho}$ value for state A magnetisation is defined as
\begin{equation}
\mathrm{R}_{1\rho} = - \frac{1}{T_\textrm{relax}} \cdot \ln \left( M_0^T \cdot e^{R \cdot T_\textrm{relax}} \cdot M_0 \right),
\end{equation}
 
For this model, the equations from \citet{Korzhnev05a} have been used.
The $\mathrm{R}_{1\rho}$ value for state A magnetisation is defined as
\begin{equation}
\mathrm{R}_{1\rho} = - \frac{1}{T_\textrm{relax}} \cdot \ln \left( M_0^T \cdot e^{R \cdot T_\textrm{relax}} \cdot M_0 \right),
\end{equation}
 
For this model, the equations from \citet{Korzhnev05a} have been used.
The $\mathrm{R}_{1\rho}$ value for state A magnetisation is defined as
\begin{equation}
\mathrm{R}_{1\rho} = - \frac{1}{T_\textrm{relax}} \cdot \ln \left( M_0^T \cdot e^{R \cdot T_\textrm{relax}} \cdot M_0 \right),
\end{equation}
 
For this model, the equations from \citet{Korzhnev05a} have been used.
The $\mathrm{R}_{1\rho}$ value for state A magnetisation is defined as
\begin{equation}
\begin{equation}
R = \begin{pmatrix}
-\mathrm{R}_{1\rho}{`´}-\kAB textrm{k}_\textrm{AB} & -\delta_A & 0 & \kBA textrm{k}_\textrm{BA} & 0 & 0 \\ \delta_A & -\mathrm{R}_{1\rho}{`´}-\kAB textrm{k}_\textrm{AB} & -\omega_1 & 0 & \kBA textrm{k}_\textrm{BA} & 0 \\ 0 & \omega_1 & -\Ronemathrm{R}_1-\kAB textrm{k}_\textrm{AB} & 0 & 0 & \kBA textrm{k}_\textrm{BA} \\ \kAB textrm{k}_\textrm{AB} & 0 & 0 & -\mathrm{R}_{1\rho}{`´}-\kBA textrm{k}_\textrm{BA} & -\delta_B & 0 \\ 0 & \kAB textrm{k}_\textrm{AB} & 0 & \delta_B & -\mathrm{R}_{1\rho}{`´}-\kBA textrm{k}_\textrm{BA} & -\omega_1 \\ 0 & 0 & \kAB textrm{k}_\textrm{AB} & 0 & \omega_1 & -\Ronemathrm{R}_1-\kBA textrm{k}_\textrm{BA} \\
\end{pmatrix},
\end{equation}
Trusted, Bureaucrats
1,382

edits

Navigation menu